66 resultados para storm surges


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flooding of urbanised areas constitutes a hazard to the population and infrastructure. Floods through inundated urban environments have been studied recently and the potential impact of flowing waters on pedestrians is not well known. Herein the stability of individuals in floodwaters is reviewed based upon the re-analysis of detailed field measurements in an inundated section of the central business district of the City of Brisbane (Australia) during the 2011 flood. Detailed water elevation and velocity data were recorded. On-site observations showed some hydrodynamic instability linked to local topographic effects, in the form of a combination of fast turbulent fluctuations and (very) slow fluctuations of water level and velocity associated with surges. The flow conditions in Gardens Point Road was unsafe for individuals and a review of past guidelines suggests that many previous recommendations are over-optimistic and unsafe in real floodwaters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Submarine groundwater discharge (SGD) is an integral part of the hydrological cycle and represents an important aspect of land-ocean interactions. We used a numerical model to simulate flow and salt transport in a nearshore groundwater aquifer under varying wave conditions based on yearlong random wave data sets, including storm surge events. The results showed significant flow asymmetry with rapid response of influxes and retarded response of effluxes across the seabed to the irregular wave conditions. While a storm surge immediately intensified seawater influx to the aquifer, the subsequent return of intruded seawater to the sea, as part of an increased SGD, was gradual. Using functional data analysis, we revealed and quantified retarded, cumulative effects of past wave conditions on SGD including the fresh groundwater and recirculating seawater discharge components. The retardation was characterized well by a gamma distribution function regardless of wave conditions. The relationships between discharge rates and wave parameters were quantifiable by a regression model in a functional form independent of the actual irregular wave conditions. This statistical model provides a useful method for analyzing and predicting SGD from nearshore unconfined aquifers affected by random waves

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steel roofs made of thin cold-formed steel roof claddings and battens are widely used in low-rise residential and industrial buildings all around the world. However, they suffer from premature localised pull-through failures in the batten to rafter connections during high wind events. A recent study proposed a suitable design equation for the pull-through failures of thin steel roof battens. However, it was limited to static wind uplift loading. In contrast, most cyclone/storm events produce cyclic wind uplift forces on roofs for a significantly long period, thus causing premature fatigue pull-through failures at lower loads. Therefore, a series of constant amplitude cyclic load tests was conducted on small and full scale roof panels made of a commonly used industrial roof batten to develop their S-N curves. A series of multi-level cyclic tests, including the recently introduced low-high-low (LHL) fatigue loading test, was also undertaken to simulate a design cyclone. Using the S-N curves, the static pull-through design capacity equation was modified to include the effects of fatigue. Applicability of Miner’s rule was evaluated in order to predict the fatigue damage caused by multi-level cyclic tests such as the LHL test, and suitable modifications were made. The combined use of the modified Miner’s law and the S-N curve of roof battens will allow a conservative estimation of the fatigue design capacity of roof battens without conducting the LHL tests simulating a design cyclone. This paper presents the details of this study, and the results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Description of the work Shrinking Violets is comprised of two half scale garments in laser cut silk organza, developed with a knotting device to allow for disassembly and reassembly. The first is a jacket in layered red organza including black storm flap details. The second is a vest in jade organza with circles of pink organza attached through a pattern of knots. Research Background This practice-led fashion design research sits within the field of Design for Sustainability (DfS) in fashion that seeks to mitigate the environmental and ethical impacts of fashion consumption and production. The research explores new systems of garment construction for DfS, and examines how these systems may involve ‘designing’ new user interactions with the garments. The garments’ construction system allows them to be disassembled and recycled or reassembled by users to form a new garment. Conventional garment design follows a set process of cutting and construction, with pattern pieces permanently machine-stitched together. Garments typically contain multiple fibre types; for example a jacket may be constructed from a shell of wool/polyester, an acetate lining, fusible interlinings, and plastic buttons. These complex inputs mean that textile recycling is highly labour intensive, first to separate the garment pieces and second to sort the multiple fibre types. This difficulty results in poor quality ‘shoddy’ comprised of many fibre types and unsuitable for new apparel, or in large quantities of recyclable textile waste sent to landfill (Hawley 2011). Design-led approaches that consider the garment’s end of life in the design process are a way of addressing this problem. In Gulich’s (2006) analysis, use of single materials is the most effective way to ensure ease of recycling, with multiple materials that can be detached next in effectiveness. Given the low rate of technological innovation in most apparel manufacturing (Ruiz 2011), a challenge for effective recycling is how to develop new manufacturing methods that allow for garments to be more easily disassembled at end-of-life. Research Contribution This project addresses the research question: How can design for disassembly be considered within the fashion design process? I have employed a practice-led methodology in which my design process leads the research, making use of methods of fashion design practice including garment and construction research, fabric and colour research, textile experimentation, drape, patternmaking, and illustration as well as more recent methods such as laser cutting. Interrogating the traditional approaches to garment construction is necessarily a technical process; however fashion design is as much about the aesthetic and desirability of a garment as it is about the garment’s pragmatics or utility. This requires a balance between the technical demands of designing for disassembly with the aesthetic demands of fashion. This led to the selection of luxurious, semi-transparent fabrics in bold floral colours that could be layered to create multiple visual effects, as well as the experimentation with laser cutting for new forms of finishing and fastening the fabrics together. Shrinking Violets makes two contributions to new knowledge in the area of design for sustainability within fashion. The first is in the technical development of apparel modularity through the system of laser cut holes and knots that also become a patterning device. The second contribution lies in the design of a system for users to engage with the garment through its ability to be easily reconstructed into a new form. Research Significance Shrinking Violets was exhibited at the State Library of Queensland’s Asia Pacific Design Library, 1-5 November 2015, as part of The International Association of Societies of Design Research’s (IASDR) biannual design conference. The work was chosen for display by a panel of experts, based on the criteria of design innovation and contribution to new knowledge in design. References Gulich, B. (2006). Designing textile products that are easy to recycle. In Y. Wang (Ed.), Recycling in Textiles (pp. 25-37). London: Woodhead. Hawley, J. M. (2011). Textile recycling options: exploring what could be. In A. Gwilt & T. Rissanen (Eds.), Shaping Sustainable Fashion: Changing the way we make and use clothes (pp. 143 - 155). London: Earthscan. Ruiz, B. (2014). Global Apparel Manufacturing. Retrieved 10 August 2014, from http://clients1.ibisworld.com/reports/gl/industry/default.aspx?entid=470

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Potable water resources are being depleted at an alarming rate worldwide. Storm water is a hugely under-utilized resource that could help as extreme weather events become more frequent...