139 resultados para statistical model for macromolecules
Resumo:
The recent development of indoor wireless local area network (WLAN) standards at 2.45 GHz and 5 GHz has led to increased interest in propagation studies at these frequency bands. Within the indoor environment, human body effects can strongly reduce the quality of wireless communication systems. Human body effects can cause temporal variations and shadowing due to pedestrian movement and antenna- body interaction with portable terminals. This book presents a statistical characterisation, based on measurements, of human body effects on indoor narrowband channels at 2.45 GHz and at 5.2 GHz. A novel cumulative distribution function (CDF) that models the 5 GHz narrowband channel in populated indoor environments is proposed. This novel CDF describes the received envelope in terms of pedestrian traffic. In addition, a novel channel model for the populated indoor environment is proposed for the Multiple-Input Multiple-Output (MIMO) narrowband channel in presence of pedestrians at 2.45 GHz. Results suggest that practical MIMO systems must be sufficiently adaptive if they are to benefit from the capacity enhancement caused by pedestrian movement.
Resumo:
Understanding the complexities that are involved in the genetics of multifactorial diseases is still a monumental task. In addition to environmental factors that can influence the risk of disease, there is also a number of other complicating factors. Genetic variants associated with age of disease onset may be different from those variants associated with overall risk of disease, and variants may be located in positions that are not consistent with the traditional protein coding genetic paradigm. Latent Variable Models are well suited for the analysis of genetic data. A latent variable is one that we do not directly observe, but which is believed to exist or is included for computational or analytic convenience in a model. This thesis presents a mixture of methodological developments utilising latent variables, and results from case studies in genetic epidemiology and comparative genomics. Epidemiological studies have identified a number of environmental risk factors for appendicitis, but the disease aetiology of this oft thought useless vestige remains largely a mystery. The effects of smoking on other gastrointestinal disorders are well documented, and in light of this, the thesis investigates the association between smoking and appendicitis through the use of latent variables. By utilising data from a large Australian twin study questionnaire as both cohort and case-control, evidence is found for the association between tobacco smoking and appendicitis. Twin and family studies have also found evidence for the role of heredity in the risk of appendicitis. Results from previous studies are extended here to estimate the heritability of age-at-onset and account for the eect of smoking. This thesis presents a novel approach for performing a genome-wide variance components linkage analysis on transformed residuals from a Cox regression. This method finds evidence for a dierent subset of genes responsible for variation in age at onset than those associated with overall risk of appendicitis. Motivated by increasing evidence of functional activity in regions of the genome once thought of as evolutionary graveyards, this thesis develops a generalisation to the Bayesian multiple changepoint model on aligned DNA sequences for more than two species. This sensitive technique is applied to evaluating the distributions of evolutionary rates, with the finding that they are much more complex than previously apparent. We show strong evidence for at least 9 well-resolved evolutionary rate classes in an alignment of four Drosophila species and at least 7 classes in an alignment of four mammals, including human. A pattern of enrichment and depletion of genic regions in the profiled segments suggests they are functionally significant, and most likely consist of various functional classes. Furthermore, a method of incorporating alignment characteristics representative of function such as GC content and type of mutation into the segmentation model is developed within this thesis. Evidence of fine-structured segmental variation is presented.
Resumo:
In this paper, we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new double smooth transition conditional correlation (DSTCC) GARCH model extends the smooth transition conditional correlation (STCC) GARCH model of Silvennoinen and Teräsvirta (2005) by including another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. Applying the model to the stock and bond futures data, we discover that the correlation pattern between them has dramatically changed around the turn of the century. The model is also applied to a selection of world stock indices, and we find evidence for an increasing degree of integration in the capital markets.
Resumo:
Existing literature has failed to find robust relationships between individual differences and the ability to fake psychological tests, possibly due to limitations in how successful faking is operationalised. In order to fake, individuals must alter their original profile to create a particular impression. Currently, successful faking is operationalised through statistical definitions, informant ratings, known groups comparisons, the use of archival and baseline data, and breaches of validity indexes. However, there are many methodological limitations to these approaches. This research proposed a three component model of successful faking to address this, where an original response is manipulated into a strategic response, which must match a criteria target. Further, by operationalising successful faking in this manner, this research takes into account the fact that individuals may have been successful in reaching their implicitly created profile, but that this may not have matched the criteria they were instructed to fake.Participants (N=48, 22 students and 26 non-students) completed the BDI-II honestly. Participants then faked the BDI-II as if they had no, mild, moderate and severe depression, as well as completing a checklist revealing which symptoms they thought indicated each level of depression. Findings were consistent with a three component model of successful faking, where individuals effectively changed their profile to what they believed was required, however this profile differed from the criteria defined by the psychometric norms of the test.One of the foremost issues for research in this area is the inconsistent manner in which successful faking is operationalised. This research allowed successful faking to be operationalised in an objective, quantifiable manner. Using this model as a template may allow researchers better understanding of the processes involved in faking, including the role of strategies and abilities in determining the outcome of test dissimulation.
Resumo:
This paper presents the results from a study of information behaviors in the context of people's everyday lives undertaken in order to develop an integrated model of information behavior (IB). 34 participants from across 6 countries maintained a daily information journal or diary – mainly through a secure web log – for two weeks, to an aggregate of 468 participant days over five months. The text-rich diary data was analyzed using a multi-method qualitative-quantitative analysis in the following order: Grounded Theory analysis with manual coding, automated concept analysis using thesaurus-based visualization, and finally a statistical analysis of the coding data. The findings indicate that people engage in several information behaviors simultaneously throughout their everyday lives (including home and work life) and that sense-making is entangled in all aspects of them. Participants engaged in many of the information behaviors in a parallel, distributed, and concurrent fashion: many information behaviors for one information problem, one information behavior across many information problems, and many information behaviors concurrently across many information problems. Findings indicate also that information avoidance – both active and passive avoidance – is a common phenomenon and that information organizing behaviors or the lack thereof caused the most problems for participants. An integrated model of information behaviors is presented based on the findings.
Resumo:
We have developed a new experimental method for interrogating statistical theories of music perception by implementing these theories as generative music algorithms. We call this method Generation in Context. This method differs from most experimental techniques in music perception in that it incorporates aesthetic judgments. Generation In Context is designed to measure percepts for which the musical context is suspected to play an important role. In particular the method is suitable for the study of perceptual parameters which are temporally dynamic. We outline a use of this approach to investigate David Temperley’s (2007) probabilistic melody model, and provide some provisional insights as to what is revealed about the model. We suggest that Temperley’s model could be improved by dynamically modulating the probability distributions according to the changing musical context.
Resumo:
There has been a worldwide trend to increase axle loads and train speeds. This means that railway track degradation will be accelerated, and track maintenance costs will be increased significantly. There is a need to investigate the consequences of increasing traffic load. The aim of the research is to develop a model for the analysis of physical degradation of railway tracks in response to changes in traffic parameters, especially increased axle loads and train speeds. This research has developed an integrated track degradation model (ITDM) by integrating several models into a comprehensive framework. Mechanistic relationships for track degradation hav~ ?een used wherever possible in each of the models contained in ITDM. This overcc:mes the deficiency of the traditional statistical track models which rely heavily on historical degradation data, which is generally not available in many railway systems. In addition statistical models lack the flexibility of incorporating future changes in traffic patterns or maintenance practices. The research starts with reviewing railway track related studies both in Australia and overseas to develop a comprehensive understanding of track performance under various traffic conditions. Existing railway related models are then examined for their suitability for track degradation analysis for Australian situations. The ITDM model is subsequently developed by modifying suitable existing models, and developing new models where necessary. The ITDM model contains four interrelated submodels for rails, sleepers, ballast and subgrade, and track modulus. The rail submodel is for rail wear analysis and is developed from a theoretical concept. The sleeper submodel is for timber sleepers damage prediction. The submodel is developed by modifying and extending an existing model developed elsewhere. The submodel has also incorporated an analysis for the likelihood of concrete sleeper cracking. The ballast and subgrade submodel is evolved from a concept developed in the USA. Substantial modifications and improvements have been made. The track modulus submodel is developed from a conceptual method. Corrections for more global track conditions have been made. The integration of these submodels into one comprehensive package has enabled the interaction between individual track components to be taken into account. This is done by calculating wheel load distribution with time and updating track conditions periodically in the process of track degradation simulation. A Windows-based computer program ~ssociated with ITDM has also been developed. The program enables the user to carry out analysis of degradation of individual track components and to investigate the inter relationships between these track components and their deterioration. The successful implementation of this research has provided essential information for prediction of increased maintenance as a consequence of railway trackdegradation. The model, having been presented at various conferences and seminars, has attracted wide interest. It is anticipated that the model will be put into practical use among Australian railways, enabling track maintenance planning to be optimized and potentially saving Australian railway systems millions of dollars in operating costs.
Resumo:
We propose a model-based approach to unify clustering and network modeling using time-course gene expression data. Specifically, our approach uses a mixture model to cluster genes. Genes within the same cluster share a similar expression profile. The network is built over cluster-specific expression profiles using state-space models. We discuss the application of our model to simulated data as well as to time-course gene expression data arising from animal models on prostate cancer progression. The latter application shows that with a combined statistical/bioinformatics analyses, we are able to extract gene-to-gene relationships supported by the literature as well as new plausible relationships.