324 resultados para shear-stress
Resumo:
A significant number of children suffer long term psychological disturbance following exposure to a natural disaster. Evidence suggests that a dose-response relationship exists, so that children and adolescents who experience the most intense or extensive exposure to the risk factors for PTSD are likely to develop the most serious and persistent symptoms. Risk factors include gender, age, personality, extent of exposure to the natural disaster, amount of damage to property and infrastructure, witnessing injury or death of others or perceiving a threat to their own life. Knowing these factors enables various strategies to be put in place to decrease the risk of psychological disturbance following the aftermath of traumatic events. Re-establishing a sense of safety, security and normality is important in the aftermath of a natural disaster, and promoting social connectedness, positive family functioning, and effective coping mechanisms can make children more resilient in the face of catastrophic events. This paper examines the risk and protective factors associated with the development of post traumatic stress disorder (PTSD), and considers how schools can use this knowledge to contribute to the recovery effort, and reduce the prevalence of PTSD amongst pupils in the wake of a natural disaster.
Resumo:
Has the GFC really changed the thinking of the property industry? Or are investment managers suffering from post-GFC stress disorder fated to repeat the mistakes of the past? Christine Retschlag reports on the mindset of the market.
Resumo:
Despite more than three decades of research, there is a limited understanding of the transactional processes of appraisal, stress and coping. This has led to calls for more focused research on the entire process that underlies these variables. To date, there remains a paucity of such research. The present study examined Lazarus and Folkman’s (1984) transactional model of stress and coping. One hundred and twenty nine Australian participants with full time employment (i.e. nurses and administration employees) were recruited. There were 49 male (age mean = 34, SD = 10.51) and 80 female (age mean = 36, SD = 10.31) participants. The analysis of three path models indicated that in addition to the original paths, which were found in Lazarus and Folkman’s transactional model (primary appraisal-->secondary appraisal-->stress-->coping), there were also direct links between primary appraisal and stress level time one and between stress level time one to stress level time two. This study has provided additional insights into the transactional process which will extend our understanding of how individuals appraise, cope and experience occupational stress.
Resumo:
Refugees from Sudan are the fastest growing community in Australia. Australian mental health professionals have to be prepared to offer services to this ethnic group along with the other mainstream and diverse consumers. In order to offer culturally competent services, these mental health professionals are required to be familiar with this emerging community. As such a review was undertaken with two main goals. Firstly, the review aimed to educate Australian mental health professionals about the demographics and culture of Sudan, the traumas encountered as a result of the civil war, factors leading to massive exodus, and the difficulties of the transit and post migration phase. Secondly, the review intended to inform Australian mental health professionals about the possible acculturation stress that is manifested in the form of intergeneration and role conflict and marital difficulties. The review highlights that there are few studies addressing acculturation stress of Sudanese refugees, and even fewer on the impact it has on relationships. Future research directions are discussed.
Resumo:
This paper presents the details of an investigation on the shear behaviour of a recently developed, cold-formed steel beam known as LiteSteel Beam (LSB).The LSB section has a unique shape of a channel beam with two rectangular hollow flanges and is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. In the present investigation, a series of numerical analyses based on three-dimensional finite element modeling and an experimental study were carried out to investigate the shear behaviour of 10 different LSB sections. It was found that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LiteSteel beams. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Therefore the design rules were further modified to include the available post-buckling strength. Suitable design rules were also developed under the direct strength method format. This paper presents the details of this investigation and the results including the final design rules for the shear capacity of LSBs. It also presents new shear strength formulae for lipped channel beams based on the current design equations for shear strength given in AISI (2007) using the same approach used for LSBs.
Resumo:
Frontline employees constitute one of the key interfaces that service organisations have with their markets. Many strategies to enhance the ability of these employees to satisfy the needs of customers have been proposed. Amongst these, empowering employees has been suggested to enhance the customer orientation of the firm and consequently its effectiveness in serving the market. However, the impact of empowerment in service organisations remains somewhat contentious. This paper examines the role of empowerments an organisational service strategy and identifies its consequences for role stress, job satisfaction and the willingness of service employees to serve their customers.
Resumo:
LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel beam. The unique LSB section is produced by a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. To date, limited research has been undertaken on the shear buckling behaviour of LSBs with torsionally rigid, rectangular hollow flanges. For the shear design of LSB web panels, their elastic shear buckling strength must be determined accurately including the potential post-buckling strength. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the flange and web elements. Therefore finite element analyses were carried out to investigate the elastic shear buckling behaviour of LSB sections including the effect of true support conditions at the junction between their flange and web elements. An improved equation for the higher elastic shear buckling coefficient of LSBs was developed and included in the shear capacity equations of Australian cold-formed steel codes. Predicted ultimate shear capacity results were compared with available experimental results, both of which showed considerable improvement to the shear capacities of LSBs. A study on the shear flow distribution of LSBs was also undertaken prior to the elastic buckling analysis study. This paper presents the details of this investigation and the results including the shear flow distribution of LSBs. Keywords: LiteSteel beam, Elastic shear buckling, Shear flow, Cold-formed steel structures, Slender web, Hollow flanges.
Resumo:
This paper presents the details of an experimental study on the shear behaviour and strength of a recently developed, cold-formed steel hollow flange channel beam known as LiteSteel Beam (LSB). The new LSB sections with rectangular hollow flanges are produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. They are commonly used as flexural members in buildings. However, no research has been undertaken on the shear behaviour of LSBs. Therefore a detailed experimental study involving 36 shear tests was undertaken to investigate the shear behaviour of 10 different LSB sections. Simply supported test specimens of LSBs with aspect ratios of 1.0 and 1.5 were loaded at midspan until failure using both single and back to back LSB arrangements. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. Comparison of experimental results with corresponding predictions from the current Australian and North American cold-formed steel design rules showed that the current design rules are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Appropriate improvements have been proposed for the shear strength of LSBs based on the design equations in the North American Specification. This paper presents the details of this experimental study and the results. When reduced height web side plates or only one web side plate was used, the shear capacity of LSB was reduced. Details of these tests and the results are also presented in this paper. Keywords: LiteSteel beam, Shear strength, Shear tests, Cold-formed steel structures, Direct strength method, Slender web, Hollow flanges.
Resumo:
As part of an ongoing research on the development of a longer life insulated rail joint (IRJ), this paper reports a field experiment and a simplified 2D numerical modelling for the purpose of investigating the behaviour of rail web in the vicinity of endpost in an insulated rail joint (IRJ) due to wheel passages. A simplified 2D plane stress finite element model is used to simulate the wheel-rail rolling contact impact at IRJ. This model is validated using data from a strain gauged IRJ that was installed in a heavy haul network; data in terms of the vertical and shear strains at specific positions of the IRJ during train passing were captured and compared with the results of the FE model. The comparison indicates a satisfactory agreement between the FE model and the field testing. Furthermore, it demonstrates that the experimental and numerical analyses reported in this paper provide a valuable datum for developing further insight into the behaviour of IRJ under wheel impacts.
Resumo:
OneSteel Australian Tube Mills has recently developed a new hollow flange channel cold-formed section, known as the LiteSteel Beam (LSB). The innovative LSB sections have the beneficial characteristics of torsionally rigid closed rectangular flanges combined with economical fabrication processes from a single strip of high strength steel. They combine the stability of hot-rolled steel sections with the high strength to weight ratio of conventional cold-formed steel sections. The LSB sections are commonly used as flexural members in residential, industrial and commercial buildings. In order to ensure safe and efficient designs of LSBs, many research studies have been undertaken on the flexural behaviour of LSBs. However, no research has been undertaken on the shear behaviour of LSBs. Therefore this thesis investigated the ultimate shear strength behaviour of LSBs with and without web openings including their elastic buckling and post-buckling characteristics using both experimental and finite element analyses, and developed accurate shear design rules. Currently the elastic shear buckling coefficients of web panels are determined by assuming conservatively that the web panels are simply supported at the junction between the web and flange elements. Therefore finite element analyses were conducted first to investigate the elastic shear buckling behaviour of LSBs to determine the true support condition at the junction between their web and flange elements. An equation for the higher elastic shear buckling coefficient of LSBs was developed and included in the shear capacity equations in the cold-formed steel structures code, AS/NZS 4600. Predicted shear capacities from the modified equations and the available experimental results demonstrated the improvements to the shear capacities of LSBs due to the presence of higher level of fixity at the LSB flange to web juncture. A detailed study into the shear flow distribution of LSB was also undertaken prior to the elastic buckling analysis study. The experimental study of ten LSB sections included 42 shear tests of LSBs with aspect ratios of 1.0 and 1.5 that were loaded at midspan until failure. Both single and back to back LSB arrangements were used. Test specimens were chosen such that all three types of shear failure (shear yielding, inelastic and elastic shear buckling) occurred in the tests. Experimental results showed that the current cold-formed steel design rules are very conservative for the shear design of LSBs. Significant improvements to web shear buckling occurred due to the presence of rectangular hollow flanges while considerable post-buckling strength was also observed. Experimental results were presented and compared with corresponding predictions from the current design rules. Appropriate improvements have been proposed for the shear strength of LSBs based on AISI (2007) design equations and test results. Suitable design rules were also developed under the direct strength method (DSM) format. This thesis also includes the shear test results of cold-formed lipped channel beams from LaBoube and Yu (1978a), and the new design rules developed based on them using the same approach used with LSBs. Finite element models of LSBs in shear were also developed to investigate the ultimate shear strength behaviour of LSBs including their elastic and post-buckling characteristics. They were validated by comparing their results with experimental test results. Details of the finite element models of LSBs, the nonlinear analysis results and their comparisons with experimental results are presented in this thesis. Finite element analysis results showed that the current cold-formed steel design rules are very conservative for the shear design of LSBs. They also confirmed other experimental findings relating to elastic and post-buckling shear strength of LSBs. A detailed parametric study based on validated experimental finite element model was undertaken to develop an extensive shear strength data base and was then used to confirm the accuracy of the new shear strength equations proposed in this thesis. Experimental and numerical studies were also undertaken to investigate the shear behaviour of LSBs with web openings. Twenty six shear tests were first undertaken using a three point loading arrangement. It was found that AS/NZS 4600 and Shan et al.'s (1997) design equations are conservative for the shear design of LSBs with web openings while McMahon et al.'s (2008) design equation are unconservative. Experimental finite element models of LSBs with web openings were then developed and validated by comparing their results with experimental test results. The developed nonlinear finite element model was found to predict the shear capacity of LSBs with web opening with very good accuracy. Improved design equations have been proposed for the shear capacity of LSBs with web openings based on both experimental and FEA parametric study results. This thesis presents the details of experimental and numerical studies of the shear behaviour and strength of LSBs with and without web openings and the results including the developed accurate design rules.