150 resultados para semipreparative chromatography
Resumo:
In this study, a tandem LC-MS (Waters Xevo TQ) MRM-based MS method was developed for rapid, broad profiling of hydrophilic metabolites from biological samples, in either positive or negative ion modes without the need for an ion pairing reagent, using a reversed-phase pentafluorophenylpropyl (PFPP) column. The developed method was successfully applied to analyze various biological samples from C57BL/6 mice, including urine, duodenum, liver, plasma, kidney, heart, and skeletal muscle. As result, a total 112 of hydrophilic metabolites were detected within 8 min of running time to obtain a metabolite profile of the biological samples. The analysis of this number of hydrophilic metabolites is significantly faster than previous studies. Classification separation for metabolites from different tissues was globally analyzed by PCA, PLS-DA and HCA biostatistical methods. Overall, most of the hydrophilic metabolites were found to have a "fingerprint" characteristic of tissue dependency. In general, a higher level of most metabolites was found in urine, duodenum, and kidney. Altogether, these results suggest that this method has potential application for targeted metabolomic analyzes of hydrophilic metabolites in a wide ranges of biological samples.
Resumo:
In this study, the promising metabolomic approach integrating with ingenuity pathway analysis (IPA) was applied to characterize the tissue specific metabolic perturbation of rats that was induced by indomethacin. The selective pattern recognition analyses were applied to analyze global metabolic profiling of urine of rats treated by indomethacin at an acute dosage of reference that has been proven to induce tissue disorders in rats, evaluated throughout the time-course of -24-72 h. The results preliminarily revealed that modifications of amino acid metabolism, fatty acid metabolism and energetically associated metabolic pathways accounted for metabolic perturbation of the rats that was induced by indomethacin. Furthermore, IPA was applied to deeply analyze the biomarkers and their relations with the metabolic perturbations evidenced by pattern recognition analyses. Specific biochemical functions affected by indomethacin suggested that there is an important correlation of its effects in kidney and liver metabolism, based on the determined metabolites and their pathway-based analysis. The IPA correlation of the three major biomarkers, identified as creatinine, prostaglandin E2 and guanosine, suggested that the administration of indomethacin induced certain levels of toxicity in the kidneys and liver. The changes in the levels of biomarker metabolites allowed the phenotypical determination of the metabolic perturbations induced by indomethacin in a time-dependent manner.
Resumo:
Metabolomic profiling offers direct insights into the chemical environment and metabolic pathway activities at sites of human disease. During infection, this environment may receive important contributions from both host and pathogen. Here we apply an untargeted metabolomics approach to identify compounds associated with an E. coli urinary tract infection population. Correlative and structural data from minimally processed samples were obtained using an optimized LC-MS platform capable of resolving ~2300 molecular features. Principal component analysis readily distinguished patient groups and multiple supervised chemometric analyses resolved robust metabolomic shifts between groups. These analyses revealed nine compounds whose provisional structures suggest candidate infection-associated endocrine, catabolic, and lipid pathways. Several of these metabolite signatures may derive from microbial processing of host metabolites. Overall, this study highlights the ability of metabolomic approaches to directly identify compounds encountered by, and produced from, bacterial pathogens within human hosts.
Resumo:
The promise of metabonomics, a new "omics" technique, to validate Chinese medicines and the compatibility of Chinese formulas has been appreciated. The present study was undertaken to explore the excretion pattern of low molecular mass metabolites in the male Wistar-derived rat model of kidney yin deficiency induced with thyroxine and reserpine as well as the therapeutic effect of Liu Wei Di Huang Wan (LW) and its separated prescriptions, a classic traditional Chinese medicine formula for treating kidney yin deficiency in China. The study utilized ultra-performance liquid chromatography/electrospray ionization synapt high definition mass spectrometry (UPLC/ESI-SYNAPT-HDMS) in both negative and positive electrospray ionization (ESI). At the same time, blood biochemistry was examined to identify specific changes in the kidney yin deficiency. Distinct changes in the pattern of metabolites, as a result of daily administration of thyroxine and reserpine, were observed by UPLC-HDMS combined with a principal component analysis (PCA). The changes in metabolic profiling were restored to their baseline values after treatment with LW according to the PCA score plots. Altogether, the current metabonomic approach based on UPLC-HDMS and orthogonal projection to latent structures discriminate analysis (OPLS-DA) indicated 20 ions (14 in the negative mode, 8 in the positive mode, and 2 in both) as "differentiating metabolites".
Resumo:
We introduce the use of Ingenuity Pathway Analysis to analyzing global metabonomics in order to characterize phenotypically biochemical perturbations and the potential mechanisms of the gentamicin-induced toxicity in multiple organs. A single dose of gentamicin was administered to Sprague Dawley rats (200 mg/kg, n = 6) and urine samples were collected at -24-0 h pre-dosage, 0-24, 24-48, 48-72 and 72-96 h post-dosage of gentamicin. The urine metabonomics analysis was performed by UPLC/MS, and the mass spectra signals of the detected metabolites were systematically deconvoluted and analyzed by pattern recognition analyses (Heatmap, PCA and PLS-DA), revealing a time-dependency of the biochemical perturbations induced by gentamicin toxicity. As result, the holistic metabolome change induced by gentamicin toxicity in the animal's organisms was characterized. Several metabolites involved in amino acid metabolism were identified in urine, and it was confirmed that gentamicin biochemical perturbations can be foreseen from these biomarkers. Notoriously, it was found that gentamicin induced toxicity in multiple organs system in the laboratory rats. The proof-of-knowledge based Ingenuity Pathway Analysis revealed gentamicin induced liver and heart toxicity, along with the previously known toxicity in kidney. The metabolites creatine, nicotinic acid, prostaglandin E2, and cholic acid were identified and validated as phenotypic biomarkers of gentamicin induced toxicity. Altogether, the significance of the use of metabonomics analyses in the assessment of drug toxicity is highlighted once more; furthermore, this work demonstrated the powerful predictive potential of the Ingenuity Pathway Analysis to study of drug toxicity and its valuable complementation for metabonomics based assessment of the drug toxicity.
Resumo:
Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality in industrialized societies. The lack of metabolite biomarkers has impeded the clinical diagnosis of atherosclerosis so far. In this study, stable atherosclerosis patients (n=16) and age- and sex-matched non-atherosclerosis healthy subjects (n=28) were recruited from the local community (Harbin, P. R. China). The plasma was collected from each study subject and was subjected to metabolomics analysis by GC/MS. Pattern recognition analyses (principal components analysis, orthogonal partial least-squares discriminate analysis, and hierarchical clustering analysis) commonly demonstrated plasma metabolome, which was significantly different from atherosclerotic and non-atherosclerotic subjects. The development of atherosclerosis-induced metabolic perturbations of fatty acids, such as palmitate, stearate, and 1-monolinoleoylglycerol, was confirmed consistent with previous publication, showing that palmitate significantly contributes to atherosclerosis development via targeting apoptosis and inflammation pathways. Altogether, this study demonstrated that the development of atherosclerosis directly perturbed fatty acid metabolism, especially that of palmitate, which was confirmed as a phenotypic biomarker for clinical diagnosis of atherosclerosis.
Resumo:
A simple, sensitive, and validated method was developed for simultaneous determination of scoparone, capillarisin, rhein, and emodin in rat urine by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC-MS). The urinary samples were analyzed on an Acquity UPLC BEH C18 1.7 microm 2.1x50 mm column. Scoparone, capillarisin, rhein, and emodin in rat urine were simultaneously analyzed with good separation. The lower limits of detection were 6.0, 9.0, 7.0, and 3.0 ng/mL, and the lower limits of quantification were 20.0, 33.0, 24.0, and 12.0 ng/mL for scoparone, capillarisin, rhein, and emodin, respectively. The intra- and inter-day precisions (RSD) were less than 9%. The intra- and inter-accuracies were found to be in the range of 94.14-104.54% for scoparone, 101.72-107.34% for capillarisin, 95.24-103.59% for rhein, and 101.32-107.82% for emodin at three concentration levels. The absolute recoveries for scoparone, capillarisin, rhein, and emodin were not less than 77.0%. The developed method has been applied to determine scoparone, capillarisin, rhein, and emodin in rat urine after oral administration of Yin Chen Hao Tang preparation, a traditional Chinese medicine formulation widely used in China for treatment of jaundice and liver disorders.
Resumo:
Yin Chen Hao Tang preparation (YCHTP) is a classic traditional Chinese medicine formula, which is commonly used for clinical treatment of hepatological diseases. In this study, a rapid and validated high-performance liquid chromatography (HPLC) method was developed to simultaneously identify 6,7-dimethylesculetin and geniposide in rat plasma. This assay was performed on a Dikma Diamonsil RP(18) column (200 mmx4.6 mm, 5 mum) with acetonitrile-methanol-water (0.1% formic acid) as the mobile phase, showing acceptable linearity, intra- and inter-day precision and accuracy (R.S.D.=5%), and absolute recovery for two analytes (74%); the limits of quantitation were 0.4 and 1.12 mug/ml, and the limits of detection were 0.06 and 0.09 mug/ml for two analytes. The developed method was successfully applied to study the effect of formula compatibility on the pharmacokinetics of 6,7-dimethylesculetin and geniposide in YCHTP when orally administrating an effective human daily dose of YCHTP to rats. We surmise that formula compatibility can significantly influence the pharmacokinetics of YCHTP, and we have elucidated and validated the compatible administration of YCHTP.
Resumo:
Poor health and injury represent major obstacles to the future economic security of Australia. The national economic cost of work-related injury is estimated at $57.5 billion p/a. Since exposure to high physical demands is a major risk factor for musculoskeletal injury, monitoring and managing such physical activity levels in workers is a potentially important injury prevention strategy. Current injury monitoring practices are inadequate for the provision of clinically valuable information about the tissue specific responses to physical exertion. Injury of various soft tissue structures can manifest over time through accumulation of micro-trauma. Such micro-trauma has a propensity to increase the risk of acute injuries to soft-tissue structures such as muscle or tendon. As such, the capacity to monitor biomarkers that result from the disruption of these tissues offers a means of assisting the pre-emptive management of subclinical injury prior to acute failure or for evaluation of recovery processes. Here we have adopted an in-vivo exercise induced muscle damage model allowing the application of laboratory controlled conditions to assist in uncovering biochemical indicators associated with soft-tissue trauma and recovery. Importantly, urine was utilised as the diagnostic medium since it is non-invasive to collect, more acceptable to workers and less costly to employers. Moreover, it is our hypothesis that exercise induced tissue degradation products enter the circulation and are subsequently filtered by the kidney and pass through to the urine. To test this hypothesis a range of metabolomic and proteomic discovery-phase techniques were used, along with targeted approaches. Several small molecules relating to tissue damage were identified along with a series of skeletal muscle-specific protein fragments resulting from exercise induced soft-tissue damage. Each of the potential biomolecular markers appeared to be temporally present within urine. Moreover, the regulation of abundance seemed to be associated with functional recovery following the injury. This discovery may have important clinical applications for monitoring of a variety of inflammatory myopathies as well as novel applications in monitoring of the musculoskeletal health status of workers, professional athletes and/or military personnel to reduce the onset of potentially debilitating musculoskeletal injuries within these professions.
Resumo:
AIM: Zhi Zhu Wan (ZZW) is a classical Chinese medical formulation used for the treatment of functional dyspepsia that attributed to Spleen-deficiency Syndrome. ZZW contains Atractylodes Rhizome and Fructus Citrus Immaturus, the later originates from both Citrus aurantium L. (BZZW) and Citrus sinensis Osbeck (RZZW). The present study is designed to elucidate disparities in the clinical efficacy of two ZZW varieties based on the pharmacokinetics of naringenin and hesperetin. MEHTOD: After oral administration of ZZWs, blood sample was collected from healthy volunteers at designed time points. Naringenin and hesperetin were detected in plasma by RP-HPLC, pharmacokinetic parameters were processed using mode-independent methods with WINNONLIN. RESULTS: After oral administration of BZZW, both naringenin and hesperetin were detected in plasma, and demonstrated similar pharmacokinetic parameters. Ka was 0.384+/-0.165 and 0.401+/-0.159, T(1/2(ke))(h) was 5.491+/-3.926 and 5.824+/-3.067, the AUC (mg/Lh) was 34.886+/-22.199 and 39.407+/-19.535 for naringenin and hesperetin, respectively. However, in the case of RZZW, only hesperetin was found in plasma, but the pharmacokinetic properties for hesperetin in RZZW was different from that in BZZW. T(max) for hesperetin in RZZW is about 8.515h, and its C(max) is much larger than that of BZZW. Moreover, it was eliminated slowly as it possessed a much larger AUC value. CONCLUSION: The distinct therapeutic orientations of the Chinese medical formula ZZWs with different Fructus Citrus Immaturus could be elucidated based on the pharmacokinetic parameters of constituents after oral administration.
Resumo:
High-performance liquid chromatography coupled with solid phase extraction method was developed for determination of isofraxidin in rat plasma after oral administration of Acanthopanax senticosus extract (ASE), and pharmacokinetic parameters of isofraxidin either in ASE or pure compound were measured. The HPLC analysis was performed on a Dikma Diamonsil RP(18) column (4.6 mm x 150 mm, 5 microm) with the isocratic elution of solvent A (acetonitrile) and solvent B (0.1% aqueous phosphoric acid, v/v) (A : B = 22 : 78) and the detection wavelength was set at 343 nm. The calibration curve was linear over the range of 0.156-15.625 microg/ml. The limit of detection was 60 ng/ml. The intra-day precision was 5.8%, and the inter-day precision was 6.0%. The recovery was 87.30+/-1.73%. When the dosage of ASE is equal to pure compound caculated by the amount of isofraxidin, it has been found to have two maximum concentrations in plasma while the pure compound only showed one peak in the plasma concentration-time curve. The determined content of isofraxidin in plasma after oral administration of ASE is the total contents of free isofraxidin and its precursors in ASE in vitro. The pharmacokinetic characteristics of ASE showed the priority of the extract and the properities of traditional Chinese medicine.
Resumo:
A completely validated method based on HPLC coupled with photodiode array detector (HPLC-UV) was described for evaluating and controlling quality of Yin Chen Hao Tang extract (YCHTE). First, HPLC-UV fingerprint chromatogram of YCHTE was established for preliminarily elucidating amount and chromatographic trajectory of chemical constituents in YCHTE. Second, for the first time, five mainly bioactive constituents in YCHTE were simultaneously determined based on fingerprint chromatogram for furthermore controlling the quality of YCHTE quantitatively. The developed method was applied to analyze 12 batches of YCHTE samples which consisted of herbal drugs from different places of production, showed acceptable linearity, intraday (RSD <5%), interday precision (RSD <4.80%), and accuracy (RSD <2.80%). As a result, fingerprint chromatogram determined 15 representative general fingerprint peaks, and the fingerprint chromatogram resemblances are all better than 0.9996. The contents of five analytes in different batches of YCHTE samples do not indicate significant difference. So, it is concluded that the developed HPLC-UV method is a more fully validated and complete method for evaluating and controlling the quality of YCHTE.
Resumo:
A method for the rapid and simultaneous determination of 6,7-dimethylesculetin (CAS 120-08-1) and geniposide (CAS 24512-63-8) in rat plasma has been developed, using validated high performance liquid chromatography (HPLC) with solid phase extraction (SPE). The HPLC analysis was performed on a commercially available column (200 mm x 4.6 mm, 5 microm) with acetonitrile-methanol-0.1% aqueous formic acid as mobile phase and the UV detection at 343 nm and 238 nm for 6,7-dimethylesculetin and geniposide, respectively. The calibration curves for 6,7-dimethylesculetin and geniposide were linear over the range 0.4-25.6 microg/mL and 1.12-71.68 microg/mL, respectively. The lower limits of quantitation were 0.40 microg/ mL and 1.12 microg/mL, and the lower limits of detection were 0.06 microg/mL and 0.09 microg/ mL, respectively. The intra-day and inter-day precision for 6,7-dimethylesculetin and geniposide were < 5%, whereas the absolute recovery percentages were > 74%. A successful application of the developed HPLC analysis was demonstrated for the pharmacokinetic study of a Traditional Chinese Medicine formula of Yin Chen Hao Tang preparation.
Resumo:
Ultra-performance LC coupled to quadrupole TOF/MS (UPLC-QTOF/MS) in positive and negative ESI was developed and validated to analyze metabolite profiles for urine from healthy men during the day and at night. Data analysis using principal components analysis (PCA) revealed differences between metabolic phenotypes of urine in healthy men during the day and at night. Positive ions with mass-to-charge ratio (m/z) 310.24 (5.35 min), 286.24 (4.74 min) and 310.24 (5.63 min) were elevated in the urine from healthy men at night compared to that during the day. Negative ions elevated in day urine samples of healthy men included m/z 167.02 (0.66 min), 263.12 (2.55 min) and 191.03 (0.73 min), whilst ions m/z 212.01 (4.77 min) were at a lower concentration in urine of healthy men during the day compared to that at night. The ions m/z 212.01 (4.77 min), 191.03 (0.73 min) and 310.24 (5.35 min) preliminarily correspond to indoxyl sulfate, citric acid and N-acetylneuraminic acid, providing further support for an involvement of phenotypic difference in urine of healthy men in day and night samples, which may be associated with notably different activities of gut microbiota, velocity of tricarboxylic acid cycle and activity of sialic acid biosynthesis in healthy men as regulated by circadian rhythm of the mammalian bioclock.
Resumo:
A UPLC/Q-TOF-MS/MS method for analyzing the constituents in rat plasma after oral administration of Yin Chen Hao Tang (YCHT), a traditional Chinese medical formula, has been established. The UPLC/MS fingerprints of the samples were established first in vitro and in vivo, with 45 compounds in YCHT and 21 compounds in rat plasma after oral administration of YCHT were detected. Of the 45 detected compounds in vitro, 30 were identified, and all of the 21 compounds detected in rat plasma were identified either by comparing the retention time and mass spectrometry data with that of reference compounds or by mass spectrometry analysis and retrieving the reference literatures. Of the identified 21 compounds in rat plasma, 19 were the original form of compounds absorbed from the 45 detected compounds in vitro, 2 were the metabolites of the compounds existed in YCHT. It is concluded that a rapid and validated method has been developed based on UPLC-MS/MS, which shows high sensitivity and resolution that is more suitable for identifying the bioactive constituents in plasma after oral administration of Chinese herbal medicines, and provides helpful chemical information for further pharmacology and active mechanism research on the Chinese medical formula.