74 resultados para seismic analysis, seismic retrofitting, viscous dampers, seismic response, racks, arch bridges


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research treated the response of underground transportation tunnels to surface blast loads using advanced computer simulation techniques. The influences of important parameters, such as tunnel material, geometrical configuration of segments and surrounding soil were investigated. The findings of this research offer significant new information on the blast performance of underground tunnels and will contribute towards future civil engineering applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The forthcoming NIST’s Advanced Hash Standard (AHS) competition to select SHA-3 hash function requires that each candidate hash function submission must have at least one construction to support FIPS 198 HMAC application. As part of its evaluation, NIST is aiming to select either a candidate hash function which is more resistant to known side channel attacks (SCA) when plugged into HMAC, or that has an alternative MAC mode which is more resistant to known SCA than the other submitted alternatives. In response to this, we perform differential power analysis (DPA) on the possible smart card implementations of some of the recently proposed MAC alternatives to NMAC (a fully analyzed variant of HMAC) and HMAC algorithms and NMAC/HMAC versions of some recently proposed hash and compression function modes. We show that the recently proposed BNMAC and KMDP MAC schemes are even weaker than NMAC/HMAC against the DPA attacks, whereas multi-lane NMAC, EMD MAC and the keyed wide-pipe hash have similar security to NMAC against the DPA attacks. Our DPA attacks do not work on the NMAC setting of MDC-2, Grindahl and MAME compression functions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years disaster risk reduction efforts have focused on disturbances ranging from climate variability, seismic hazards, geo-political instability and public and animal health crises. These factors combined with uncertainty derived from inter-dependencies within and across systems of critical infrastructure create significant problems of governance for the private and public sector alike. The potential for rapid spread of impacts, geographically and virtually, can render a comprehensive understanding of disaster response and recovery needs and risk mitigation issues beyond the grasp of competent authority. Because of such cascading effects communities and governments at local and state-levels are unlikely to face single incidents but rather series of systemic impacts: often appearing concurrently. A further point to note is that both natural and technological hazards can act directly on socio-technical systems as well as being propagated by them: as network events. Such events have been categorised as ‘outside of the box,’ ‘too fast,’ and ‘too strange’ (Lagadec, 2004). Emergent complexities in linked systems can make disaster effects difficult to anticipate and recovery efforts difficult to plan for. Beyond the uncertainties of real world disasters, that might be called familiar or even regular, can we safely assume that the generic capability we use now will suit future disaster contexts? This paper presents initial scoping of research funded by the Bushfire and Natural Hazards Cooperative Research Centre seeking to define future capability needs of disaster management organisations. It explores challenges to anticipating the needs of representative agencies and groups active in before, during and after phases of emergency and disaster situations using capability deficit assessments and scenario assessment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the objectives of this study was to evaluate soil testing equipment based on its capability of measuring in-place stiffness or modulus values. As design criteria transition from empirical to mechanistic-empirical, soil test methods and equipment that measure properties such as stiffness and modulus and how they relate to Florida materials are needed. Requirements for the selected equipment are that they be portable, cost effective, reliable, a ccurate, and repeatable. A second objective is that the selected equipment measures soil properties without the use of nuclear materials.The current device used to measure soil compaction is the nuclear density gauge (NDG). Equipment evaluated in this research included lightweight deflectometers (LWD) from different manufacturers, a dynamic cone penetrometer (DCP), a GeoGauge, a Clegg impact soil tester (CIST), a Briaud compaction device (BCD), and a seismic pavement analyzer (SPA). Evaluations were conducted over ranges of measured densities and moistures.Testing (Phases I and II) was conducted in a test box and test pits. Phase III testing was conducted on materials found on five construction projects located in the Jacksonville, Florida, area. Phase I analyses determined that the GeoGauge had the lowest overall coefficient of variance (COV). In ascending order of COV were the accelerometer-type LWD, the geophone-type LWD, the DCP, the BCD, and the SPA which had the highest overall COV. As a result, the BCD and the SPA were excluded from Phase II testing.In Phase II, measurements obtained from the selected equipment were compared to the modulus values obtained by the static plate load test (PLT), the resilient modulus (MR) from laboratory testing, and the NDG measurements. To minimize soil and moisture content variability, the single spot testing sequence was developed. At each location, test results obtained from the portable equipment under evaluation were compared to the values from adjacent NDG, PLT, and laboratory MR measurements. Correlations were developed through statistical analysis. Target values were developed for various soils for verification on similar soils that were field tested in Phase III. The single spot testing sequence also was employed in Phase III, field testing performed on A-3 and A-2-4 embankments, limerock-stabilized subgrade, limerock base, and graded aggregate base found on Florida Department of Transportation construction projects. The Phase II and Phase III results provided potential trend information for future research—specifically, data collection for in-depth statistical analysis for correlations with the laboratory MR for specific soil types under specific moisture conditions. With the collection of enough data, stronger relationships could be expected between measurements from the portable equipment and the MR values. Based on the statistical analyses and the experience gained from extensive use of the equipment, the combination of the DCP and the LWD was selected for in-place soil testing for compaction control acceptance. Test methods and developmental specifications were written for the DCP and the LWD. The developmental specifications include target values for the compaction control of embankment, subgrade, and base materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Montserrat now provides one of the most complete datasets for understanding the character and tempo of hazardous events at volcanic islands. Much of the erupted material ends up offshore, and this offshore record may be easier to date due to intervening hemiplegic sediments between event beds. The offshore dataset includes the first scientific drilling of volcanic island landslides during IODP Expedition 340, together with an unusually comprehensive set of shallow sediment cores and 2-D and 3-D seismic surveys. Most recently in 2013, Remotely Operated Vehicle (ROV) dives mapped and sampled the surface of the main landslide deposits. This contribution aims to provide an overview of key insights from ongoing work on IODP Expedition 340 Sites offshore Montserrat.Key objectives are to understand the composition (and hence source), emplacement mechanism (and hence tsunami generation) of major landslides, together with their frequency and timing relative to volcanic eruption cycles. The most recent major collapse event is Deposit 1, which involved ~1.8 km cubed of material and produced a blocky deposit at ~12-14ka. Deposit 1 appears to have involved not only the volcanic edifice, but also a substantial component of a fringing bioclastic shelf, and material locally incorporated from the underlying seafloor. This information allows us to test how first-order landslide morphology (e.g. blocky or elongate lobes) is related to first-order landslide composition. Preliminary analysis suggests that Deposit 1 occurred shortly before a second major landslide on the SW of the island (Deposit 5). It may have initiated English's Crater, but was not associated with a major change in magma composition. An associated turbidite-stack suggests it was emplaced in multiple stages, separated by at least a few hours and thus reducing the tsunami magnitude. The ROV dives show that mega-blocks in detail comprise smaller-scale breccias, which can travel significant distances without complete disintegration. Landslide Deposit 2 was emplaced at ~130ka, and is more voluminous (~8.4km cubed). It had a much more profound influence on the magmatic system, as it was linked to a major explosive mafic eruption and formation of a new volcanic centre (South Soufriere Hills) on the island. Site U1395 confirms a hypothesis based on the site survey seismic data that Deposit 2 includes a substantial component of pre-existing seafloor sediment. However, surprisingly, this pre-existing seafloor sediment in the lower part of Deposit 2 at Site U1395 is completely undeformed and flat lying, suggesting that Site U1395 penetrated a flat lying block. Work to date material from the upper part of U1396, U1395 and U1394 will also be summarised. This work is establishing a chronostratigraphy of major events over the last 1 Ma, with particularly detailed constraints during the last ~250ka. This is helping us to understand whether major landslides are related to cycles of volcanic eruptions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pattern recognition is a promising approach for the identification of structural damage using measured dynamic data. Much of the research on pattern recognition has employed artificial neural networks (ANNs) and genetic algorithms as systematic ways of matching pattern features. The selection of a damage-sensitive and noise-insensitive pattern feature is important for all structural damage identification methods. Accordingly, a neural networks-based damage detection method using frequency response function (FRF) data is presented in this paper. This method can effectively consider uncertainties of measured data from which training patterns are generated. The proposed method reduces the dimension of the initial FRF data and transforms it into new damage indices and employs an ANN method for the actual damage localization and quantification using recognized damage patterns from the algorithm. In civil engineering applications, the measurement of dynamic response under field conditions always contains noise components from environmental factors. In order to evaluate the performance of the proposed strategy with noise polluted data, noise contaminated measurements are also introduced to the proposed algorithm. ANNs with optimal architecture give minimum training and testing errors and provide precise damage detection results. In order to maximize damage detection results, the optimal architecture of ANN is identified by defining the number of hidden layers and the number of neurons per hidden layer by a trial and error method. In real testing, the number of measurement points and the measurement locations to obtain the structure response are critical for damage detection. Therefore, optimal sensor placement to improve damage identification is also investigated herein. A finite element model of a two storey framed structure is used to train the neural network. It shows accurate performance and gives low error with simulated and noise-contaminated data for single and multiple damage cases. As a result, the proposed method can be used for structural health monitoring and damage detection, particularly for cases where the measurement data is very large. Furthermore, it is suggested that an optimal ANN architecture can detect damage occurrence with good accuracy and can provide damage quantification with reasonable accuracy under varying levels of damage.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Finite element analysis (FEA) models of uniaxial loading of pumpkin peel and flesh tissues were developed and validated using experimental results. The tensile model was developed for both linear elastic and plastic material models, the compression model was develop d only with the plastic material model. The outcomes of force versus time curves obtained from FEA models followed similar pattern to the experimental curves however the curve resulted with linear elastic material properties had a higher difference with the experimental curves. The values of predicted forces were determined and compared with the experimental curve. An error indicator was introduced and computed for each case and compared. Additionally Root Mean Square Error (RMSE) values were also calculated for each model and compared. The results of modelling were used to develop material model for peel and flesh tissues in FEA modelling of mechanical peeling of tough skinned vegetables.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The deep transverse metatarsal ligaments (DTML) play an important role in stabilizing the metatarsal bones and manipulating foot transverse arch deformation. However, the biomechanical research about DTML in the foot maneuver is quite few. Due to the difficulties and lack of better measurement technology for these ligaments experimental monitor, the load transfer mechanism and internal stress state also hadn't been well addressed. The purpose of this study was to develop a detailing foot finite element model including DTML tissues, to investigate the mechanical response of DTML during the landing condition. The DTML was considered as hyperelastic material model was used to represent the nonlinear and nearly incompressible nature of the ligament tissue. From the simulation results, it is clearly to find that the peak maiximal principal stress of DTML was between the third and fourth metatarsals. Meanwhile, it seems the DTML in the middle position experienced higher tension than the sides DTML.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Precarious Creativity examines the seismic changes confronting media workers in an age of globalization and corporate conglomeration. This pathbreaking anthology peeks behind the hype and supposed glamor of screen media industries to reveal the intensifying pressures and challenges confronting actors, editors, electricians, and others. The authors take on pressing conceptual and methodological issues while also providing insightful case studies of workplace dynamics regarding creativity, collaboration, exploitation, and cultural difference. Furthermore, it examines working conditions and organizing efforts on all six continents, offering broad-ranging and comprehensive analysis of contemporary screen media labor in such places as Lagos, Prague, Hollywood, and Hyderabad. The collection also examines labor conditions across a range of job categories that includes, for example, visual effects, production services, and adult entertainment. With contributions from such leading scholars as John Caldwell, Vicki Mayer, Herman Gray, and Tejaswini Ganti, Precarious Creativity offers timely critiques of media globalization while also intervening in broader debates about labor, creativity, and precarity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Underground tunnels are vulnerable to terrorist attacks which can cause collapse of the tunnel structures or at least extensive damage, requiring lengthy repairs. This paper treats the blast impact on a reinforced concrete segmental tunnel buried in soil under a number of parametric conditions; soil properties, soil cover, distance of explosive from the tunnel centreline and explosive weight and analyses the possible failure patterns. A fully coupled Fluid Structure Interaction (FSI) technique incorporating the Arbitrary Lagrangian-Eulerian (ALE) method is used in this study. Results indicate that the tunnel in saturated soil is more vulnerable to severe damage than that buried in either partially saturated soil or dry soil. The tunnel is also more vulnerable to surface explosions which occur directly above the centre of the tunnel than those that occur at any equivalent distances in the ground away from the tunnel centre. The research findings provide useful information on modeling, analysis, overall tunnel response and failure patterns of segmented tunnels subjected to blast loads. This information will guide future development and application of research in this field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present a novel application of scenario methods to engage a diverse constituency of senior stakeholders, with limited time availability, in debate to inform planning and policy development. Our case study project explores post-carbon futures for the Latrobe Valley region of the Australian state of Victoria. Our approach involved initial deductive development of two ‘extreme scenarios’ by a multi-disciplinary research team, based upon an extensive research programme. Over four workshops with the stakeholder constituency, these initial scenarios were discussed, challenged, refined and expanded through an inductive process, whereby participants took ‘ownership’ of a final set of three scenarios. These were both comfortable and challenging to them. The outcomes of this process subsequently informed public policy development for the region. Whilst this process did not follow a single extant structured, multi-stage scenario approach, neither was it devoid of form. Here, we seek to theorise and codify elements of our process – which we term ‘scenario improvisation’ – such that others may adopt it.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is focused on the study of a vibrating system forced by a rotating unbalance and coupled to a tuned mass damper (TMD). The analysis of the dynamic response of the entire system is used to define the parameters of such device in order to achieve optimal damping properties. The inertial forcing due to the rotating unbalance depends quadratically on the forcing frequency and it leads to optimal tuning parameters that differ from classical values obtained for pure harmonic forcing. Analytical results demonstrate that frequency and damping ratios, as a function of the mass parameter, should be higher than classical optimal parameters. The analytical study is carried out for the undamped primary system, and numerically investigated for the damped primary system. We show that, for practical applications, proper TMD tuning allows to achieve a reduction in the steady-state response of about 20% with respect to the response achieved with a classically tuned damper. Copyright © 2015 by ASME.