72 resultados para respiratory airflow
Resumo:
We report that tumor cells devoid of their mitochondrial genome (mtDNA) show delayed tumor growth and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory supercomplexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest a novel pathophysiological process for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.
Resumo:
Background Despite the burden of acute respiratory illnesses (ARI) among Aboriginal and Torres Strait Islander children being a substantial cause of childhood morbidity and associated costs to families, communities and the health system, data on disease burden in urban children are lacking. Consequently evidence-based decision-making, data management guidelines, health resourcing for primary health care services and prevention strategies are lacking. This study aims to comprehensively describe the epidemiology, impact and outcomes of ARI in urban Aboriginal and Torres Strait Islander children (hereafter referred to as Indigenous) in the greater Brisbane area. Methods/design A prospective cohort study of Indigenous children aged less than five years registered with a primary health care service in Northern Brisbane, Queensland, Australia. Children are recruited at time of presentation to the service for any reason. Demographic, epidemiological, risk factor, microbiological, economic and clinical data are collected at enrolment. Enrolled children are followed for 12 months during which time ARI events, changes in child characteristics over time and monthly nasal swabs are collected. Children who develop an ARI with cough as a symptom during the study period are more intensely followed-up for 28(±3) days including weekly nasal swabs and parent completed cough diary cards. Children with persistent cough at day 28 post-ARI are reviewed by a paediatrician. Discussion Our study will be one of the first to comprehensively evaluate the natural history, epidemiology, aetiology, economic impact and outcomes of ARIs in this population. The results will inform studies for the development of evidence-based guidelines to improve the early detection, prevention and management of chronic cough and setting of priorities in children during and after ARI.
Resumo:
Airborne bioaerosols are becoming increasingly recognized as a potential route of transmission for the spread of bacterial and viral respiratory tract infections.
Resumo:
There are limited community-based data on the burden of influenza and influenza-like illnesses during pregnancy to inform disease surveillance and control. We aimed to determine the incidence of medically-attended respiratory illnesses (MARI) in pregnant women and the proportion of women who are tested for respiratory pathogens at these visits. We conducted a nested retrospective cohort study of a non-random sample of women aged ≥18 years who had a live birth in maternity units in Brisbane, Queensland, from March 2012 to October 2014. The primary outcomes were self-reported doctor visits for MARI and laboratory investigations for respiratory pathogens. Descriptive analyses were performed. Among 1202 participants, 222 (18.5%, 95%CI 16.3%-20.7%) self-reported MARI during their pregnancy. Of those with an MARI, 20.3% (45/222) self-reported a laboratory test was performed. We were able to confirm with health service providers that 46.7% (21/45) of tests were undertaken, responses from providers were not received for the remainder. Whilst one in five women in this population reported a MARI in pregnancy, only 3.7% (45/1202) reported a clinical specimen had been arranged at the consultation and the ability to validate that self-report was problematic. As the focus on maternal immunisation increases, ascertainment of the aetiological agent causing MARI in this population will be required and efficient and reliable methods for obtaining those data at the community level need to be established.
Resumo:
This study investigated the possible interplay effects arising from the treatment of moving targets using the dynamic conformal arc therapy (DCAT) technique. Dose from a modulated test beam was measured, with and without phantom motion and with and without a 30o arc rotation, using a diode array placed on a sinusoidally moving platform. Measurements were repeated at five different collimator angles (0, 22.5, 45, 67.5 and 90o), at two different dose rates (300 and 600 MU/min). Results showed that the effect of respiratory motion on the measured dose distribution increased slightly when the beams were delivered as arcs, rather than with a static gantry angle, and that this effect increased substantially as the collimator angle was increased from 0o (MLC motion perpendicular to respiratory motion) to 90o (MLC motion parallel to respiratory motion). The dose oscillations arising from interplay between phantom and MLC motion were found to increase in magnitude when the dose rate was increased. These results led to the development of simple recommendations for minimizing the negative effects of motion interplay on DCAT dose distributions
Resumo:
Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included “marrying” ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored.
Resumo:
Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both types of subtropical grass pollens to achieve optimal diagnosis and treatment of patients with allergic respiratory disease in subtropical regions of the world. © 2014 John Wiley & Sons Ltd.
Resumo:
BACKGROUND: Acute respiratory exacerbations (AREs) cause morbidity and lung function decline in children with chronic suppurative lung disease (CSLD) and bronchiectasis. In a prospective longitudinal cohort study, we determined the patterns of AREs and factors related to increased risks for AREs in children with CSLD/bronchiectasis. METHODS: Ninety-three indigenous children aged 0.5 to 8 years with CSLD/bronchiectasis in Australia (n = 57) and Alaska (n = 36) during 2004 to 2009 were followed for > 3 years. Standardized parent interviews, physical examinations, and medical record reviews were undertaken at enrollment and every 3 to 6 months thereafter. RESULTS: Ninety-three children experienced 280 AREs (median = 2, range = 0-11 per child) during the 3-year period; 91 (32%) were associated with pneumonia, and 43 (15%) resulted in hospitalization. Of the 93 children, 69 (74%) experienced more than two AREs over the 3-year period, and 28 (30%) had more than one ARE in each study year. The frequency of AREs declined significantly over each year of follow-up. Factors associated with recurrent (two or more) AREs included age < 3 years, ARE-related hospitalization in the first year of life, and pneumonia or hospitalization for ARE in the year preceding enrollment. Factors associated with hospitalizations for AREs in the first year of study included age < 3 years, female caregiver education, and regular use of bronchodilators. CONCLUSIONS: AREs are common in children with CSLD/bronchiectasis, but with clinical care and time AREs occur less frequently. All children with CSLD/bronchiectasis require comprehensive care; however, treatment strategies may differ for these patients based on their changing risks for AREs during each year of care.
Resumo:
Chlamydia pneumoniae is an obligate intracellular bacterium implicated in a wide range of human diseases including atherosclerosis and Alzheimer's disease. Efforts to understand the relationships between C. pneumoniae detected in these diseases have been hindered by the availability of sequence data for non-respiratory strains. In this study, we sequenced the whole genomes for C. pneumoniae isolates from atherosclerosis and Alzheimer's disease, and compared these to previously published C. pneumoniae genomes. Phylogenetic analyses of these new C. pneumoniae strains indicate two sub-groups within human C. pneumoniae, and suggest that both recombination and mutation events have driven the evolution of human C. pneumoniae. Further fine-detailed analyses of these new C. pneumoniae sequences show several genetically variable loci. This suggests that similar strains of C. pneumoniae are found in the brain, lungs and cardiovascular system and that only minor genetic differences may contribute to the adaptation of particular strains in human disease.
Resumo:
This article provides a review of techniques for the analysis of survival data arising from respiratory health studies. Popular techniques such as the Kaplan–Meier survival plot and the Cox proportional hazards model are presented and illustrated using data from a lung cancer study. Advanced issues are also discussed, including parametric proportional hazards models, accelerated failure time models, time-varying explanatory variables, simultaneous analysis of multiple types of outcome events and the restricted mean survival time, a novel measure of the effect of treatment.
Resumo:
Most studies exploring the role of upper airway viruses and bacteria in paediatric acute respiratory infections (ARI) focus on specific clinicaldiagnoses and/or do not account for virus–bacteria interactions. We aimed to describe the frequency and predictors of virus and bacteria codetection in children with ARI and cough, irrespective of clinical diagnosis. Bilateral nasal swabs, demographic, clinical and risk factor data were collected at enrollment in children aged <15 years presenting to an emergency department with an ARI and where cough was a symptom. Swabs were tested by polymerase chain reaction for 17 respiratory viruses and seven respiratory bacteria. Logistic regression was used to investigate associations between child characteristics and codetection of the organisms of interest. Between December 2011 and August 2014, swabs were collected from 817 (93.3%) of 876 enrolled children, median age 27.7 months (interquartile range13.9–60.3 months). Overall, 740 (90.6%) of 817 specimens were positive for any organism. Both viruses and bacteria were detected in 423 specimens (51.8%). Factors associated with codetection were age (adjusted odds ratio (aOR) for age <12 months = 4.9, 95% confidence interval (CI) 3.0, 7.9; age 12 to <24 months = 6.0, 95% CI 3.7, 9.8; age 24 to <60 months = 2.4, 95% CI 1.5, 3.9), male gender (aOR 1.46; 95% CI 1.1, 2.0), child care attendance (aOR 2.0; 95% CI 1.4, 2.8) and winter enrollment (aOR 2.0; 95% CI 1.3, 3.0). Haemophilus influenzae dominated the virus–bacteria pairs. Virus–H. influenzae interactions in ARI should be investigated further, especially as the contribution of nontypeable H. influenzae to acute and chronic respiratory diseases is being increasingly recognized.