107 resultados para powder redispersion


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparison of well-determined single crystal data for stoichiometric, or near-stoichiometric, metal hexaborides con-firm previously identified lattice parameter trends using powder diffraction. Trends for both divalent and trivalent forms suggest that potential new forms for synthesis include Sc and Mn hexaborides. Density Functional Theory (DFT) calculations for KB6, CaB6, YB6, LaB6, boron octahedral clusters and Sc and Mn forms, show that the shapes of bonding orbitals are defined by the boron framework. Inclusion of metal into the boron framework induces a reduction in energy ranging from 1 eV to 6 eV increasing with ionic charge. For metals with d1 character, such a shift in energy brings a doubly degenerate band section along the G-M reciprocal space direction within the conduction bands tangential to the Fermi surface. ScB6 band structure and density of states calculations show directional and gap characteristics similar to those of YB6 and LaB6. These calculations for ScB6 suggest it may be possible to realize superconductivity in this compound if synthesized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructures of YBa2Cu3O7-δ ceramics prepared from freeze dried powders and containing an excess of CuO have been studied by analytical electron microscopy. Special attention has been paid to the interfacial microstructure. It was found that a liquid phase formed during sintering between 890°C and 920°C and this promoted grain growth and densification. Both clean grain boundaries and boundaries containing an amorphous intergranular film, which was rich in Cu, have been observed. Both CuO and BaCuO2 were present as secondary phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sintering and densification of Y2BaCuO5 (Y-211) pellets made from powders with different characteristics have been investigated in the temperature range 1000-1140°C. A pellet made from powder containing Ba-rich secondary phases shows very early liquid-assisted sintering and densification and clear evidence of exaggerated grain growth. The melting of BaCuO2 and YBa2Cu3O7-δ (Y-123) secondary phases increases the rate of densification of Y-211 pellets made from other powders at temperatures above 1025-1030°C. All the liquid produced by the melting of the latter phases recrystallizes as intergranular layers of Y-123. These intergranular layers account for the darker appearance and for measurable electrical conductivities at room temperature of the pellets sintered at the higher temperatures. The development of exaggerated grain growth within a uniform fine-grained matrix opens the possibility of using controlled secondary recrystallization to obtain large single domains of Y-211, provided that the trapping of porosity can be avoided or minimized. © 1999 Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High temperature superconductor precursor billets (feed rods) have been developed for loading into silver tubes. The billets are loaded prior to rolling or drawing operations in PIT wire manufacture. Investigations have shown that wires and tapes prepared from feed rod loaded tubes show enhanced uniformity of electrical transport properties when compared with conventional powder packing, especially in wires drawn to long lengths. Analysis on production feed rods have shown carbon content to be as low as 110 ppm. © 1999 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unlike the case with other divalent transition metal M\[TCNQ](2)(H(2)O)(2) (M = Fe, Co, Ni) analogues, the electrochemically induced solid-solid phase interconversion of TCNQ microcrystals (TCNQ = 7,7,8,8-tetracyanoquinodimethane) to Mn\[TCNQ](2)(H(2)O)(2) occurs via two voltammetrically distinct, time dependent processes that generate the coordination polymer in nanofiber or rod-like morphologies. Careful manipulation of the voltammetric scan rate, electrolysis time, Mn(2+)((aq)) concentration, and the method of electrode modification with solid TCNQ allows selective generation of either morphology. Detailed ex situ spectroscopic (IR, Raman), scanning electron microscopy (SEM), and X-ray powder diffraction (XRD) characterization clearly establish that differences in the electrochemically synthesized Mn-TCNQ material are confined to morphology. Generation of the nanofiber form is proposed to take place rapidly via formation and reduction of a Mn-stabilized anionic dimer intermediate, \[(Mn(2+))(TCNQ-TCNQ)(2)(*-)], formed as a result of radical-substrate coupling between TCNQ(*-) and neutral TCNQ, accompanied by ingress of Mn(2+) ions from the aqueous solution at the triple phase TCNQ/electrode/electrolyte boundary. In contrast, formation of the nanorod form is much slower and is postulated to arise from disproportionation of the \[(Mn(2+))(TCNQ-TCNQ)(*-)(2)] intermediate. Thus, identification of the time dependent pathways via the solid-solid state electrochemical approach allows the crystal size of the Mn\[TCNQ](2)(H(2)O)(2) material to be tuned and provides new mechanistic insights into the formation of different morphologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Liquid metal marbles that are droplets of liquid metal encapsulated by micro- or nanoparticles are introduced. Droplets of galinstan liquid metal are coated with insulators (including Teflon and silica) and semiconductors (including WO3, TiO2, MoO3, In2O3 and carbon nanotubes) by rolling over a powder bed and also by submerging in colloidal suspensions. It is shown that these marbles can be split and merged, can be suspended on water, and are even stable when moving under the force of gravity and impacting a flat solid surface. Furthermore, the marble coating can operate as an active electronic junction and the nanomaterial coated liquid metal marble can act as a highly sensitive electrochemical based heavy metal ion sensor. This new element thus represents a significant platform for the advancement of research into soft electronics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bi-2212 thick film on silver tapes are seen as a simple and low cost alternative to high temperature superconducting wires produced by the Powder In Thbe (PIT) technique, particularly in react and wind applications. A rig for the continuous production of Bi-2212 tapes for use in react and wind component manufacture has been developed and commissioned. The rig consists of several sections, each fully automatic, for task specific duties in the production of HTS tape. The major sections are: tape coating, sintering and annealing. High temperature superconducting tapes with engineering critical current densities of 10 kA/cm2 (77 K, self field), and lengths of up to 100 m have been produced using the rig. Properties of the finished tape are discussed and results are presented for current density versus bend radius and applied strain. Depending on tape content and thickness, irreversible strain tirrm varies between 0.04 and 0.1 %. Cyclic bending tests when applied strain does not exceed Eirrm showed negligible reduction in J c along the length of the tape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bi-2212 tapes were fabricated using a powder-in-tube method and their superconducting properties were measured as a function of heat treatment. The tapes were heated to temperature, T1 (884-915 °C), and kept at that temperature for 20 min to induce partial (incongruent) melting. The samples were cooled to T2 with a ramp rate of 120 °C h-1 and then slowly cooled to T3 with a cooling rate, R2, and from T3 to T4 with a cooling rate, R3. The tapes were kept at the temperature T4 for P1 hours and then cooled to room temperature. Both R1 and R2 were chosen between 2 and 8 °C h-1. It was found that the structure and Jc of the tapes depend on the sintering conditions, i.e. T1-4, R1-3 and P1. The highest Jc of 5800 Å cm-2 was obtained at 77 K in a self-field with heat treatment where T1 = 894 and 899 °C, R1 = R2 = 5 °C h-1 and P1 = 6 h were employed. When 0.7% of bend strain, which is equivalent to a bend radius of 5 mm, was applied to the tape, 80% of the initial Jc was sustained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthesis of MgC2O4⋅2H2O nano particles was carried out by thermal double decomposition of solutions of oxalic acid dihydrate (C2H2O4⋅2H2O) and Mg(OAc)2⋅4H2O employing CATA-2R microwave reactor. Structural elucidation was carried out by employing X-ray diffraction (XRD), particle size and shape were studied by transmission electron microscopy (TEM) and nature of bonding was investigated by optical absorption and near-infrared (NIR) spectral studies. The powder resulting from this method is pure and possesses distorted rhombic octahedral structure. The synthesized nano rod is 80 nm in diameter and 549 nm in length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel composite material based on deposition of nanosized zero-valent iron (nZVI) particles on acid-leached diatomite was synthesised for the removal of a chlorinated contaminant in water. The nZVI /diatomite composites were characterized by X-ray diffraction, scanning electron microscopy, elemental analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. Compared with the pure nZVI particles, better dispersion of nZVI particles on the surface or inside the pores of diatom shells was observed. The herbicide simazine was selected as the model chlorinated contaminant and the removal efficiency by nZVI /diatomite composite was compared with that of the pristine nZVI and commercial iron powder. It was found that the diatomite supported nZVI composite material prepared by centrifugation exhibits relatively better efficient activity in decomposition of simazine than commercial Fe, lab synthesized nZVI and composite material prepared via rotary evaporation, and the optimum experimental conditions were obtained based on a series of batch experiments. This study on immobilizing nZVI particles onto diatomite opens a new avenue for the practical application of nZVI and the diatomite-supported nanosized zero-valent iron composite materials have potential applications in environmental remediation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study demonstrates a novel technique of preparing drug colloid probes to determine the adhesion force between the drug salbutamol sulphate (SS) and the surfaces of polymer microparticles to be used as carriers for the dispersion of drug particles from a dry powder inhaler (DPI) formulation. Initially model silica probes of approximately 4 μm size, similar to a drug particle used in DPI formulations, were coated with a saturated SS solution with the aid of capillary forces acting between the silica probe and the drug solution. The developed method of ensuring a smooth and uniform layer of SS on the silica probe was validated using X-Ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM). Using the same technique, silica microspheres preattached on the AFM cantilever were coated with SS. The adhesion forces between the silica probe and drug coated silica (drug probe) and polymer surfaces (hydrophilic and hydrophobic) were determined. Our experimental results showed that the technique for preparing the drug probe was robust and can be used to determine the adhesion force between hydrophilic/hydrophobic drug probe and carrier surfaces to gain a better understanding on drug carrier adhesion forces in DPI formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the variability in response of optically stimulated luminescence dosimeters (OSLDs). Examining the source of sensitivity variations in these dosimeters allows for a more comprehensive understanding of the Landauer nanoDots and their potential for current and future applications. In this work, OSLDs were scanned with a MicroCT scanner to determine potential sources for the variation in relative sensitivity across a selection of Landauer nanoDot dosimeters. Specifically, the correlation between a dosimeters relative sensitivity and the loading density of Al2O3:C powder was determined. When extrapolating the sensitive volume's radiodensity from the CT data, it was shown that there is a non-uniform distribution in crystal growth. It was calculated that a 0.05% change in the nominal volume of the chip produces a 1% change in the overall response. Additionally, the ‘true’ volume of an OSLD's sensitive material is, on average, 18% less than that which has been reported in literature, mainly due to the presence of air cavities in the material's structure. This work demonstrated that the amount of sensitive material is approximately linked to the total correction factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pilot experiment was performed using the WOMBAT powder diffraction instrument at ANSTO in which the first neutron diffraction peak (Q0) was measured for D2O flowing in a 2 mm internal diameter aluminium tube. Measurements of Q0 were made at -9, 4.3, 6.9, 12, 18.2 and 21.5 °C. The D2O was circulated using a siphon with water in the lower reservoir returned to the upper reservoir using a small pump. This enabled stable flow to be maintained for several hours. For example, if the pump flow increased slightly, the upper reservoir level rose, increasing the siphon flow until it matched the return flow. A neutron wavelength of 2.4 Å was used and data integrated over 60 minutes for each temperature. A jet of nitrogen from a liquid N2 Dewar was directed over the aluminium tube to vary water temperature. After collection of the data, the d spacing of the aluminium peaks was used to calculate the temperature of the aluminium within the neutron beam and therefore was considered to be an accurate measure of water temperature within the beam. Sigmaplot version 12.3 was used to fit a Weibull five parameter peak fit to the first neutron diffraction peak. The values of Q0 obtained in this experiment showed an increase with temperature consistent with data in the literature [1] but were consistently higher than published values for bulk D20. For example at 21.5 °C we obtained a value of 2.008 Å-1 for Q0 compared to a literature value of 1.988 Å-1 for bulk D2O at 20 °C, a difference of 1%. Further experiments are required to see if this difference is real or artifactual.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na-dodecylbenzenesulfate (SDBS), a natural anionic surfactant, has been successfully intercalated into a Ca based LDH host structure during tricalcium aluminate hydration in the presence of SDBS aqueous solution (CaAl-SDBS-LDH). The resulting product was characterized by powder X-ray diffraction (XRD), mid-infrared (MIR) spectroscopy combined with near-infrared (NIR) spectroscopy technique, thermal analysis (TG–DTA) and scan electron microscopy (SEM). The XRD results revealed that the interlayer distance of resultant product was expanded to 30.46 Å. MIR combined with NIR spectra offered an effective method to illustrate this intercalation. The NIR spectra (6000–5500 cm−1) displayed prominent bands to expound SDBS intercalated into hydration product of C3A. And the bands around 8300 cm−1 were assigned to the second overtone of the first fundamental of CH stretching vibrations of SDBS. In addition, thermal analysis showed that the dehydration and dehydroxylation took place at ca. 220 °C and 348 °C, respectively. The SEM results appeared approximately hexagonal platy crystallites morphology for CaAl-SDBS-LDH, with particle size smaller and thinner.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zero valent iron (ZVI) was prepared by reducing natural goethite (NG-ZVI) and synthetic goethite (SG-ZVI) in hydrogen at 550 °C. XRD, TEM, FESEM/EDS and specific surface area (SSA) and pore analyser were used to characterize goethites and reduced goethites. Both NG-ZVI and SG-ZVI with a size of nanoscale to several hundreds of nanometers were obtained by reducing goethites at 550 °C. The reductive capacity of the ZVIs was assessed by removal of Cr(VI) at ambient temperature in comparison with that of commercial iron powder (CIP). The effect of contact time, initial concentration and reaction temperature on Cr(VI) removal was investigated. Furthermore, the uptake mechanism was discussed according to isotherms, thermodynamic analysis and the results of XPS. The results showed that SG-ZVI had the best reductive capacity to Cr(VI) and reduced Cr(VI) to Cr(III). The results suggest that hydrogen reduction is a good approach to prepare ZVI and this type of ZVI is potentially useful in remediating heavy metals as a material of permeable reaction barrier.