245 resultados para plasma immersion ion implantation
Resumo:
The control of the generation and assembly of the electronegative plasma-grown particles is discussed. Due to the large number of elementary processes of particle creation and loss, electronegative complex plasmas should be treated as open systems where the stationary states are sustained by various particle creation and loss processes in the plasma bulk, on the walls, and on the dust grain surfaces. To be physically self-consistent, ionization, diffusion, electron attachment, recombination, dust charge variation, and dissipation due to electron and ion elastic collisions with neutrals and fine particles, as well as charging collisions with the dust, must be accounted for.
Resumo:
A complex low-pressure argon discharge plasma containing dust grains is studied using a Boltzmann equation for the electrons and fluid equations for the ions. Local effects, such as the spatial distribution of the dust density and external electric field, are included, and their effect on the electron energy distribution, the electron and ion number densities, the electron temperature, and the dust charge are investigated. It is found that dust particles can strongly affect the plasma parameters by modifying the electron energy distribution, the electron temperature, the creation and loss of plasma particles, as well as the spatial distributions of the electrons and ions. In particular, for sufficiently high grain density and/or size, in a low-pressure argon glow discharge, the Druyvesteyn-like electron distribution in pristine plasmas can become nearly Maxwellian. Electron collection by the dust grains is the main cause for the change in the electron distribution function.
Resumo:
It is shown that charged dust particles carrying a considerable proportion of the negative charge of a structured magnetized plasma can lead to low-frequency electromagnetic surface waves which otherwise do not exist. The waves are Alfvén-like and propagate across the stationary external magnetic field with a frequency below the ion cyclotron but much above the dust cyclotron frequency. The dispersion characteristics of the modes are obtained and applications to space plasmas discussed. Copyright 1999 by the American Geophysical Union.
Resumo:
The current-driven dust ion-acoustic instability in a collisional dusty plasma is studied. The effects of dust-charge variation, electron and ion capture by the dust grains, as well as various dissipative mechanisms leading to the changes of the particles momenta, are taken into account. It is shown that the threshold for the excitation of the dust ion-acoustic waves can be high because of the large dissipation rate induced by the dusts. © 1999 American Institute of Physics.
Resumo:
We present a theoretical model describing a plasma-assisted growth of carbon nanofibers (CNFs), which involves two competing channels of carbon incorporation into stacked graphene sheets: via surface diffusion and through the bulk of the catalyst particle (on the top of the nanofiber), accounting for a range of ion- and radical-assisted processes on the catalyst surface. Using this model, it is found that at low surface temperatures, Ts, the CNF growth is indeed controlled by surface diffusion, thus quantifying the semiempirical conclusions of earlier experiments. On the other hand, both the surface and bulk diffusion channels provide a comparable supply of carbon atoms to the stacked graphene sheets at elevated synthesis temperatures. It is also shown that at low Ts, insufficient for effective catalytic precursor decomposition, the plasma ions play a key role in the production of carbon atoms on the catalyst surface. The model is used to compute the growth rates for the two extreme cases of thermal and plasma-enhanced chemical vapor deposition of CNFs. More importantly, these results quantify and explain a number of observations and semiempirical conclusions of earlier experiments.
Resumo:
The influence of ion current density on the thickness of coatings deposited in a vacuum arc setup has been investigated to optimize the coating porosity. A planar probe was used to measure the ion current density distribution across plasma flux. A current density from 20 to 50 A/m2 was obtained, depending on the probe position relative to the substrate center. TiN coatings were deposited onto the cutting inserts placed at different locations on the substrate, and SEM was used to characterize the surfaces of the coatings. It was found that lowdensity coatings were formed at the decreased ion current density. A quantitative dependence of the coating thickness on the ion current density in the range of 20-50 A/m2 were obtained for the films deposited at substrate bias of 200 V and nitrogen pressure 0.1 Pa, and the coating porosity was calculated. The coated cutting inserts were tested by lathe machining of the martensitic stainless steel AISI 431. The results may be useful for controlling ion flux distribution over large industrial-scale substrates.
Resumo:
We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses following high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise, followed by one of two recovery interventions: 10 min of cold water immersion at 10°C, or 10 min active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 h and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during six sets of 10 squats at 80% 1RM. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, the participants lifted a greater load (p<0.05; 38%; Cohen’s d 1.3) following CWI compared with active recovery. During CWI, muscle temperature decreased 6°C below post-exercise values, and remained below pre-exercise values for another 35 min. Venous blood O2 saturation decreased below pre-exercise values for 1.5 h after CWI. Serum endothelin-1 concentration did not change after CWI, whereas it decreased after active recovery. Plasma myoglobin concentration was lower, whereas plasma interleukin-6 concentration was higher after CWI compared with active recovery. These results suggest that cold water immersion after resistance exercise allow athletes to complete more work during subsequent training sessions, which could enhance long-term training adaptations.
Resumo:
Plasma polymerization was used to coat a melt electrospun polycaprolactone scaffold to improve cell attachment and organization. Plasma polymerization was performed using an amine containing monomer, allylamine, which then allowed for the subsequent immobilization of biomolecules i.e. heparin and fibroblast growth factor-2. The stability of the plasma polymerized amine-coating was demonstrated by X-ray photoelectron spectroscopy analysis and imaging time-of-flight secondary ion mass spectrometry revealed that a uniform plasma amine-coating was deposited throughout the scaffold. Based upon comparison with controls it was evident that the combination scaffold aided cell ingress and the formation of distinct fibroblast and keratinocyte layers.