101 resultados para plasma biochemical parameters


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to describe wandering using new parameters and to evaluate parameters as a function of cognitive impairment and mobility. Forty-four wanderers in long-term care settings were videotaped 12 times. Rate and duration of wandering episodes were plotted and used to derive parameters from values above and below case medians, proportion of hours wandering, and time of day. Participants wandered during 47% of observations; on average, the hourly rate was 4.3 episodes, the peak hourly rate was 18 episodes, and the peak hourly duration was 19.9 minutes. Mini-Mental State Examination (MMSE) scores was negatively correlated with overall duration and number of observations during which duration exceeded 15 minutes per hour, was positively correlated with number of observations without wandering, and was not significantly correlated with rate-related parameters. Mobility correlated positively with rate and duration parameters. Interaction of MMSE score and mobility was the strongest predictor of wandering duration. Parameters derived from repeated measures provide a new view of daytime wandering and insight into relationships between MMSE score and mobility status with specific parameters of wandering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurodegenerative disorders are heterogenous in nature and include a range of ataxias with oculomotor apraxia, which are characterised by a wide variety of neurological and ophthalmological features. This family includes recessive and dominant disorders. A subfamily of autosomal recessive cerebellar ataxias are characterised by defects in the cellular response to DNA damage. These include the well characterised disorders Ataxia-Telangiectasia (A-T) and Ataxia-Telangiectasia Like Disorder (A-TLD) as well as the recently identified diseases Spinocerebellar ataxia with axonal neuropathy Type 1 (SCAN1), Ataxia with Oculomotor Apraxia Type 2 (AOA2), as well as the subject of this thesis, Ataxia with Oculomotor Apraxia Type 1 (AOA1). AOA1 is caused by mutations in the APTX gene, which is located at chromosomal locus 9p13. This gene codes for the 342 amino acid protein Aprataxin. Mutations in APTX cause destabilization of Aprataxin, thus AOA1 is a result of Aprataxin deficiency. Aprataxin has three functional domains, an N-terminal Forkhead Associated (FHA) phosphoprotein interaction domain, a central Histidine Triad (HIT) nucleotide hydrolase domain and a C-terminal C2H2 zinc finger. Aprataxins FHA domain has homology to FHA domain of the DNA repair protein 5’ polynucleotide kinase 3’ phosphatase (PNKP). PNKP interacts with a range of DNA repair proteins via its FHA domain and plays a critical role in processing damaged DNA termini. The presence of this domain with a nucleotide hydrolase domain and a DNA binding motif implicated that Aprataxin may be involved in DNA repair and that AOA1 may be caused by a DNA repair deficit. This was substantiated by the interaction of Aprataxin with proteins involved in the repair of both single and double strand DNA breaks (XRay Cross-Complementing 1, XRCC4 and Poly-ADP Ribose Polymerase-1) and the hypersensitivity of AOA1 patient cell lines to single and double strand break inducing agents. At the commencement of this study little was known about the in vitro and in vivo properties of Aprataxin. Initially this study focused on generation of recombinant Aprataxin proteins to facilitate examination of the in vitro properties of Aprataxin. Using recombinant Aprataxin proteins I found that Aprataxin binds to double stranded DNA. Consistent with a role for Aprataxin as a DNA repair enzyme, this binding is not sequence specific. I also report that the HIT domain of Aprataxin hydrolyses adenosine derivatives and interestingly found that this activity is competitively inhibited by DNA. This provided initial evidence that DNA binds to the HIT domain of Aprataxin. The interaction of DNA with the nucleotide hydrolase domain of Aprataxin provided initial evidence that Aprataxin may be a DNA-processing factor. Following these studies, Aprataxin was found to hydrolyse 5’adenylated DNA, which can be generated by unscheduled ligation at DNA breaks with non-standard termini. I found that cell extracts from AOA1 patients do not have DNA-adenylate hydrolase activity indicating that Aprataxin is the only DNA-adenylate hydrolase in mammalian cells. I further characterised this activity by examining the contribution of the zinc finger and FHA domains to DNA-adenylate hydrolysis by the HIT domain. I found that deletion of the zinc finger ablated the activity of the HIT domain against adenylated DNA, indicating that the zinc finger may be required for the formation of a stable enzyme-substrate complex. Deletion of the FHA domain stimulated DNA-adenylate hydrolysis, which indicated that the activity of the HIT domain may be regulated by the FHA domain. Given that the FHA domain is involved in protein-protein interactions I propose that the activity of Aprataxins HIT domain may be regulated by proteins which interact with its FHA domain. We examined this possibility by measuring the DNA-adenylate hydrolase activity of extracts from cells deficient for the Aprataxin-interacting DNA repair proteins XRCC1 and PARP-1. XRCC1 deficiency did not affect Aprataxin activity but I found that Aprataxin is destabilized in the absence of PARP-1, resulting in a deficiency of DNA-adenylate hydrolase activity in PARP-1 knockout cells. This implies a critical role for PARP-1 in the stabilization of Aprataxin. Conversely I found that PARP-1 is destabilized in the absence of Aprataxin. PARP-1 is a central player in a number of DNA repair mechanisms and this implies that not only do AOA1 cells lack Aprataxin, they may also have defects in PARP-1 dependant cellular functions. Based on this I identified a defect in a PARP-1 dependant DNA repair mechanism in AOA1 cells. Additionally, I identified elevated levels of oxidized DNA in AOA1 cells, which is indicative of a defect in Base Excision Repair (BER). I attribute this to the reduced level of the BER protein Apurinic Endonuclease 1 (APE1) I identified in Aprataxin deficient cells. This study has identified and characterised multiple DNA repair defects in AOA1 cells, indicating that Aprataxin deficiency has far-reaching cellular consequences. Consistent with the literature, I show that Aprataxin is a nuclear protein with nucleoplasmic and nucleolar distribution. Previous studies have shown that Aprataxin interacts with the nucleolar rRNA processing factor nucleolin and that AOA1 cells appear to have a mild defect in rRNA synthesis. Given the nucleolar localization of Aprataxin I examined the protein-protein interactions of Aprataxin and found that Aprataxin interacts with a number of rRNA transcription and processing factors. Based on this and the nucleolar localization of Aprataxin I proposed that Aprataxin may have an alternative role in the nucleolus. I therefore examined the transcriptional activity of Aprataxin deficient cells using nucleotide analogue incorporation. I found that AOA1 cells do not display a defect in basal levels of RNA synthesis, however they display defective transcriptional responses to DNA damage. In summary, this thesis demonstrates that Aprataxin is a DNA repair enzyme responsible for the repair of adenylated DNA termini and that it is required for stabilization of at least two other DNA repair proteins. Thus not only do AOA1 cells have no Aprataxin protein or activity, they have additional deficiencies in PolyADP Ribose Polymerase-1 and Apurinic Endonuclease 1 dependant DNA repair mechanisms. I additionally demonstrate DNA-damage inducible transcriptional defects in AOA1 cells, indicating that Aprataxin deficiency confers a broad range of cellular defects and highlighting the complexity of the cellular response to DNA damage and the multiple defects which result from Aprataxin deficiency. My detailed characterization of the cellular consequences of Aprataxin deficiency provides an important contribution to our understanding of interlinking DNA repair processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sex hormone-binding globulin (SHBG) is a homodimeric plasma glycoprotein that is the major sex steroid carrier-protein in the bloodstream and functions also as a key regulator of steroid bioavailability within target tissues, such as the prostate. Additionally, SHBG binds to prostatic cell membranes via the putative and unidentified SHBG receptor (RSHBG), activating a signal transduction pathway implicated in stimulating both proliferation and expression of prostate specific antigen (PSA) in prostate cell lines in vitro. A yeast-two hybrid assay suggested an interaction between SHBG and kallikrein-related protease (KLK) 4, which is a serine protease implicated in the progression of prostate cancer. The potential interaction between these two proteins was investigated in this PhD thesis to determine whether SHBG is a proteolytic substrate of KLK4 and other members of the KLK family including KLK3/PSA, KLK7 and KLK14. Furthermore, the effects from SHBG proteolytic degradation on SHBG-regulated steroid bioavailability and the activation of the putative RSHBG signal transduction pathway were examined in the LNCaP prostate cancer cell line. SHBG was found to be a proteolytic substrate of the trypsin-like KLK4 and KLK14 in vitro, yielding several proteolysis fragments. Both chymotrypsin-like PSA and KLK7 displayed insignificant proteolytic activity against SHBG. The kinetic parameters of SHBG proteolysis by KLK4 and KLK14 demonstrate a strong enzyme-substrate binding capacity, possessing a Km of 1.2 ± 0.7 µM and 2.1 ± 0.6 µM respectively. The catalytic efficiencies (kcat/Km) of KLK4 and KLK14 proteolysis of SHBG were 1.6 x 104 M-1s-1 and 3.8 x 104 M-1s-1 respectively, which were comparable to parameters previously reported for peptide substrates. N-terminal sequencing of the fragments revealed cleavage near the junction of the N- and C-terminal laminin globulin-like (G-like) domains of SHBG, resulting in the division of the two globulins and ultimately the full degradation of these fragments by KLK4 and KLK14 over time. Proteolytic fragments that may retain steroid binding were rapidly degraded by both proteases, while fragments containing residues beyond the steroid binding pocket were less degraded over the same period of time. Degradation of SHBG was inhibited by the divalent metal cations calcium and zinc for KLK4, and calcium, zinc and magnesium for KLK14. The human secreted serine protease inhibitors (serpins), α1-antitrypsin and α2-antiplasmin, inhibited KLK4 and KLK14 proteolysis of SHBG; α1-antichymotrypsin inhibited KLK4 but not KLK14 activity. The inhibition by these serpins was comparable and in some cases more effective than general trypsin protease inhibitors such as aprotinin and phenylmethanesulfonyl fluoride (PMSF). The binding of 5α-dihydrotestosterone (DHT) to SHBG modulated interactions with KLK4 and KLK14. Steroid-free SHBG was more readily digested by both enzymes than DHT-bound SHBG. Moreover, a binding interaction exists between SHBG and pro-KLK4 and pro-KLK14, with DHT strengthening the binding to pro-KLK4 only. The inhibition of androgen uptake by cultured prostate cancer cells, mediated by SHBG steroid-binding, was examined to assess whether SHBG proteolysis by KLK4 and KLK14 modulated this process. Proteolytic digestion eliminated the ability of SHBG to inhibit the uptake of DHT from conditioned media into LNCaP cells. Therefore, the proteolysis of SHBG by KLK4 and KLK14 increased steroid bioavailability in vitro, leading to an increased uptake of androgens by prostate cancer cells. Interestingly, different transcriptional responses of PSA and KLK2, which are androgen-regulated genes, to DHT-bounsd SHBG treatment were observed between low and high passage number LNCaP cells (lpLNCaP and hpLNCaP respectively). HpLNCaP cells treated with DHT-bound SHBG demonstrated a significant synergistic upregulation of PSA and KLK2 above DHT or SHBG treatment alone, which is similar to previously reported downstream responses from RSHBG-mediated signaling activation. As this result was not seen in lpLNCaP cells, only hpLNCaP cells were further investigated to examine the modulation of potential RSHBG activity by KLK4 and KLK14 proteolysis of SHBG. Contrary to reported results, no increase in intracellular cAMP was observed in hpLNCaP cells when treated with SHBG in the presence and absence of either DHT or estradiol. As a result, the modulation of RSHBG-mediated signaling activation could not be determined. Finally, the identification of the RSHBG from both breast (MCF-7) and prostate cancer (LNCaP) cell lines was attempted. Fluorescently labeled peptides corresponding to the putative receptor binding domain (RBD) of SHBG were shown to be internalized by MCF-7 cells. Crosslinking of the RBD peptide to the cell surfaces of both MCF-7 and LNCaP cells, demonstrated the interaction of the peptide with several targets. These targets were then captured using RBD peptides synthesized onto a hydrophilic scaffold and analysed by mass spectrometry. The samples captured by the RBD peptide returned statistically significantly matches for cytokeratin 8, 18 and 19 as well as microtubule-actin crosslinking factor 1, which may indicate a novel interaction between SHBG and these proteins, but ultimately failed to detect a membrane receptor potentially responsible for the putative RSHBG-mediated signaling. This PhD project has reported the proteolytic processing of SHBG by two members of the kallikrein family, KLK4 and KLK14. The effect of SHBG proteolysis by KLK4 and KLK14 on RSHBG-mediated signaling activation was unable to be determined as the reported signal transduction pathway was not activated after treatment with SHBG, in combination with either DHT or estradiol. However, the digestion of SHBG by these two proteases positively regulated androgen bioavailability to prostate cancer cells in vitro. The increased uptake of androgens is deleterious in prostate cancer due to the promotion of proliferation, metastasis, invasion and the inhibition of apoptosis. The increased bioavailability of androgens, from SHBG proteolysis by KLK4 and KLK14, may therefore promote both carcinogenesis and progression of prostate cancer. Finally, this information may contribute to the development of therapeutic treatment strategies for prostate cancer by inhibiting the proteolysis of SHBG, by KLK4 and KLK14, to prevent the increased uptake of androgens by hormone-dependent cancerous tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC—a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices—thus, supporting the PCA approach.