458 resultados para phase variation
Resumo:
Generating accurate population-specific public health messages regarding sun protection requires knowledge about seasonal variation in sun exposure in different environments. To address this issue for a subtropical area of Australia, we used polysulphone badges to measure UVR for the township of Nambour (26° latitude) and personal UVR exposure among Nambour residents who were taking part in a skin cancer prevention trial. Badges were worn by participants for two winter and two summer days. The ambient UVR was approximately three times as high in summer as in winter. However, participants received more than twice the proportion of available UVR in winter as in summer (6.5%vs 2.7%, P < 0.05), resulting in an average ratio of summer to winter personal UVR exposure of 1.35. The average absolute difference in daily dose between summer and winter was only one-seventh of a minimal erythemal dose. Extrapolating from our data, we estimate that ca. 42% of the total exposure received in the 6 months of winter (June–August) and summer (December–February) is received during the three winter months. Our data show that in Queensland a substantial proportion of people’s annual UVR dose is obtained in winter, underscoring the need for dissemination of sun protection messages throughout the year in subtropical and tropical climates.
Resumo:
In recent years, multilevel converters are becoming more popular and attractive than traditional converters in high voltage and high power applications. Multilevel converters are particularly suitable for harmonic reduction in high power applications where semiconductor devices are not able to operate at high switching frequencies or in high voltage applications where multilevel converters reduce the need to connect devices in series to achieve high switch voltage ratings. This thesis investigated two aspects of multilevel converters: structure and control. The first part of this thesis focuses on inductance between a DC supply and inverter components in order to minimise loop inductance, which causes overvoltages and stored energy losses during switching. Three dimensional finite element simulations and experimental tests have been carried out for all sections to verify theoretical developments. The major contributions of this section of the thesis are as follows: The use of a large area thin conductor sheet with a rectangular cross section separated by dielectric sheets (planar busbar) instead of circular cross section wires, contributes to a reduction of the stray inductance. A number of approximate equations exist for calculating the inductance of a rectangular conductor but an assumption was made that the current density was uniform throughout the conductors. This assumption is not valid for an inverter with a point injection of current. A mathematical analysis of a planar bus bar has been performed at low and high frequencies and the inductance and the resistance values between the two points of the planar busbar have been determined. A new physical structure for a voltage source inverter with symmetrical planar bus bar structure called Reduced Layer Planar Bus bar, is proposed in this thesis based on the current point injection theory. This new type of planar busbar minimises the variation in stray inductance for different switching states. The reduced layer planar busbar is a new innovation in planar busbars for high power inverters with minimum separation between busbars, optimum stray inductance and improved thermal performances. This type of the planar busbar is suitable for high power inverters, where the voltage source is supported by several capacitors in parallel in order to provide a low ripple DC voltage during operation. A two layer planar busbar with different materials has been analysed theoretically in order to determine the resistance of bus bars during switching. Increasing the resistance of the planar busbar can gain a damping ratio between stray inductance and capacitance and affects the performance of current loop during switching. The aim of this section is to increase the resistance of the planar bus bar at high frequencies (during switching) and without significantly increasing the planar busbar resistance at low frequency (50 Hz) using the skin effect. This contribution shows a novel structure of busbar suitable for high power applications where high resistance is required at switching times. In multilevel converters there are different loop inductances between busbars and power switches associated with different switching states. The aim of this research is to consider all combinations of the switching states for each multilevel converter topology and identify the loop inductance for each switching state. Results show that the physical layout of the busbars is very important for minimisation of the loop inductance at each switch state. Novel symmetrical busbar structures are proposed for multilevel converters with diode-clamp and flying-capacitor topologies which minimise the worst case in stray inductance for different switching states. Overshoot voltages and thermal problems are considered for each topology to optimise the planar busbar structure. In the second part of the thesis, closed loop current techniques have been investigated for single and three phase multilevel converters. The aims of this section are to investigate and propose suitable current controllers such as hysteresis and predictive techniques for multilevel converters with low harmonic distortion and switching losses. This section of the thesis can be classified into three parts as follows: An optimum space vector modulation technique for a three-phase voltage source inverter based on a minimum-loss strategy is proposed. One of the degrees of freedom for optimisation of the space vector modulation is the selection of the zero vectors in the switching sequence. This new method improves switching transitions per cycle for a given level of distortion as the zero vector does not alternate between each sector. The harmonic spectrum and weighted total harmonic distortion for these strategies are compared and results show up to 7% weighted total harmonic distortion improvement over the previous minimum-loss strategy. The concept of SVM technique is a very convenient representation of a set of three-phase voltages or currents used for current control techniques. A new hysteresis current control technique for a single-phase multilevel converter with flying-capacitor topology is developed. This technique is based on magnitude and time errors to optimise the level change of converter output voltage. This method also considers how to improve unbalanced voltages of capacitors using voltage vectors in order to minimise switching losses. Logic controls require handling a large number of switches and a Programmable Logic Device (PLD) is a natural implementation for state transition description. The simulation and experimental results describe and verify the current control technique for the converter. A novel predictive current control technique is proposed for a three-phase multilevel converter, which controls the capacitors' voltage and load current with minimum current ripple and switching losses. The advantage of this contribution is that the technique can be applied to more voltage levels without significantly changing the control circuit. The three-phase five-level inverter with a pure inductive load has been implemented to track three-phase reference currents using analogue circuits and a programmable logic device.
Resumo:
Science and technology are promoted as major contributors to national development. Consequently, improved science education has been placed high on the agenda of tasks to be tackled in many developing countries, although progress has often been limited. In fact there have been claims that the enormous investment in teaching science in developing countries has basically failed, with many reports of how efforts to teach science in developing countries often result in rote learning of strange concepts, mere copying of factual information, and a general lack of understanding on the part of local students. These generalisations can be applied to science education in Fiji. Muralidhar (1989) has described a situation in which upper primary and middle school students in Fiji were given little opportunity to engage in practical work; an extremely didactic form of teacher exposition was the predominant method of instruction during science lessons. He concluded that amongst other things, teachers' limited understanding, particularly of aspects of physical science, resulted in their rigid adherence to the text book or the omission of certain activities or topics. Although many of the problems associated with science education in developing countries have been documented, few attempts have been made to understand how non-Western students might better learn science. This study addresses the issue of Fiji pre-service primary teachers' understanding of a key aspect of physical science, namely, matter and how it changes, and their responses to learning experiences based on a constructivist epistemology. Initial interviews were used to probe pre-service primary teachers' understanding of this domain of science. The data were analysed to identify students' alternative and scientific conceptions. These conceptions were then used to construct Concept Profile Inventories (CPI) which allowed for qualitative comparison of the concepts of the two ethnic groups who took part in the study. This phase of the study also provided some insight into the interaction of scientific information and traditional beliefs in non-Western societies. A quantitative comparison of the groups' conceptions was conducted using a Science Concept Survey instrument developed from the CPis. These data provided considerable insight into the aspects of matter where the pre-service teachers' understanding was particularly weak. On the basis of these preliminary findings, a six-week teaching program aimed at improving the students' understanding of matter was implemented in an experimental design with a group of students. The intervention involved elements of pedagogy such as the use of analogies and concept maps which were novel to most of those who took part. At the conclusion of the teaching programme, the learning outcomes of the experimental group were compared with those of a control group taught in a more traditional manner. These outcomes were assessed quantitatively by means of pre- and post-tests and a delayed post-test, and qualitatively using an interview protocol. The students' views on the various teaching strategies used with the experimental group were also sought. The findings indicate that in the domain of matter little variation exists in the alternative conceptions held by Fijian and Indian students suggesting that cultural influences may be minimal in their construction. Furthermore, the teaching strategies implemented with the experimental group of students, although largely derived from Western research, showed considerable promise in the context of Fiji, where they appeared to be effective in improving the understanding of students from different cultural backgrounds. These outcomes may be of significance to those involved in teacher education and curriculum development in other developing countries.
Resumo:
Bioelectrical impedance analysis, (BIA), is a method of body composition analysis first investigated in 1962 which has recently received much attention by a number of research groups. The reasons for this recent interest are its advantages, (viz: inexpensive, non-invasive and portable) and also the increasing interest in the diagnostic value of body composition analysis. The concept utilised by BIA to predict body water volumes is the proportional relationship for a simple cylindrical conductor, (volume oc length2/resistance), which allows the volume to be predicted from the measured resistance and length. Most of the research to date has measured the body's resistance to the passage of a 50· kHz AC current to predict total body water, (TBW). Several research groups have investigated the application of AC currents at lower frequencies, (eg 5 kHz), to predict extracellular water, (ECW). However all research to date using BIA to predict body water volumes has used the impedance measured at a discrete frequency or frequencies. This thesis investigates the variation of impedance and phase of biological systems over a range of frequencies and describes the development of a swept frequency bioimpedance meter which measures impedance and phase at 496 frequencies ranging from 4 kHz to 1 MHz. The impedance of any biological system varies with the frequency of the applied current. The graph of reactance vs resistance yields a circular arc with the resistance decreasing with increasing frequency and reactance increasing from zero to a maximum then decreasing to zero. Computer programs were written to analyse the measured impedance spectrum and determine the impedance, Zc, at the characteristic frequency, (the frequency at which the reactance is a maximum). The fitted locus of the measured data was extrapolated to determine the resistance, Ro, at zero frequency; a value that cannot be measured directly using surface electrodes. The explanation of the theoretical basis for selecting these impedance values (Zc and Ro), to predict TBW and ECW is presented. Studies were conducted on a group of normal healthy animals, (n=42), in which TBW and ECW were determined by the gold standard of isotope dilution. The prediction quotients L2/Zc and L2/Ro, (L=length), yielded standard errors of 4.2% and 3.2% respectively, and were found to be significantly better than previously reported, empirically determined prediction quotients derived from measurements at a single frequency. The prediction equations established in this group of normal healthy animals were applied to a group of animals with abnormally low fluid levels, (n=20), and also to a group with an abnormal balance of extra-cellular to intracellular fluids, (n=20). In both cases the equations using L2/Zc and L2/Ro accurately and precisely predicted TBW and ECW. This demonstrated that the technique developed using multiple frequency bioelectrical impedance analysis, (MFBIA), can accurately predict both TBW and ECW in both normal and abnormal animals, (with standard errors of the estimate of 6% and 3% for TBW and ECW respectively). Isotope dilution techniques were used to determine TBW and ECW in a group of 60 healthy human subjects, (male. and female, aged between 18 and 45). Whole body impedance measurements were recorded on each subject using the MFBIA technique and the correlations between body water volumes, (TBW and ECW), and heighe/impedance, (for all measured frequencies), were compared. The prediction quotients H2/Zc and H2/Ro, (H=height), again yielded the highest correlation with TBW and ECW respectively with corresponding standard errors of 5.2% and 10%. The values of the correlation coefficients obtained in this study were very similar to those recently reported by others. It was also observed that in healthy human subjects the impedance measured at virtually any frequency yielded correlations not significantly different from those obtained from the MFBIA quotients. This phenomenon has been reported by other research groups and emphasises the need to validate the technique by investigating its application in one or more groups with abnormalities in fluid levels. The clinical application of MFBIA was trialled and its capability of detecting lymphoedema, (an excess of extracellular fluid), was investigated. The MFBIA technique was demonstrated to be significantly more sensitive, (P<.05), in detecting lymphoedema than the current technique of circumferential measurements. MFBIA was also shown to provide valuable information describing the changes in the quantity of muscle mass of the patient during the course of the treatment. The determination of body composition, (viz TBW and ECW), by MFBIA has been shown to be a significant improvement on previous bioelectrical impedance techniques. The merit of the MFBIA technique is evidenced in its accurate, precise and valid application in animal groups with a wide variation in body fluid volumes and balances. The multiple frequency bioelectrical impedance analysis technique developed in this study provides accurate and precise estimates of body composition, (viz TBW and ECW), regardless of the individual's state of health.
Resumo:
In this paper we propose a new method for utilising phase information by complementing it with traditional magnitude-only spectral subtraction speech enhancement through Complex Spectrum Subtraction (CSS). The proposed approach has the following advantages over traditional magnitude-only spectral subtraction: (a) it introduces complementary information to the enhancement algorithm; (b) it reduces the total number of algorithmic parameters, and; (c) is designed for improving clean speech magnitude spectra and is therefore suitable for both automatic speech recognition (ASR) and speech perception applications. Oracle-based ASR experiments verify this approach, showing an average of 20% relative word accuracy improvements when accurate estimates of the phase spectrum are available. Based on sinusoidal analysis and assuming stationarity between observations (which is shown to be better approximated as the frame rate is increased), this paper also proposes a novel method for acquiring the phase information called Phase Estimation via Delay Projection (PEDEP). Further oracle ASR experiments validate the potential for the proposed PEDEP technique in ideal conditions. Realistic implementation of CSS with PEDEP shows performance comparable to state of the art spectral subtraction techniques in a range of 15-20 dB signal-to-noise ratio environments. These results clearly demonstrate the potential for using phase spectra in spectral subtractive enhancement applications, and at the same time highlight the need for deriving more accurate phase estimates in a wider range of noise conditions.
Resumo:
Background Delivering effective multiple health behavior interventions to large numbers of adults with chronic conditions via primary care settings is a public health priority. Purpose Within a 12-month, telephone-delivered diet and physical activity intervention with multiple behavioral outcomes, we examined the extent and co-variation of multiple health behavior change. Methods A cluster-randomized trial with 434 patients with type 2 diabetes or hypertension were recruited from 10 general practices, which were randomized to receive telephone counseling or usual care. Results Those receiving telephone counseling were significantly more likely than those in usual care to make greater reductions in multiple behaviors after adjusting for baseline risk behaviors (OR 2.42; 95%CI 1.43, 4.11). Controlling for baseline risk and group allocation, making changes to either physical activity, fat, vegetable, or fiber intake was associated with making significantly more improvements in other behaviors. Conclusions For patients with chronic conditions, telephone counseling can significantly improve multiple health behaviors, with behavioral changes tending to co-vary.
Resumo:
Background/objectives The provision of the patient bed-bath is a fundamental nursing care activity yet few quantitative data and no qualitative data are available on registered nurses’ (RNs) clinical practice in this domain in the intensive care unit (ICU). The aim of this study was to describe ICU RNs current practice with respect to the timing, frequency and duration of the patient bed-bath and the cleansing and emollient agents used. Methods The study utilised a two-phase sequential explanatory mixed method design. Phase one used a questionnaire to survey RNs and phase two employed semi-structured focus group (FG) interviews with RNs. Data was collected over 28 days across four Australian metropolitan ICUs. Ethical approval was granted from the relevant hospital and university human research ethics committees. RNs were asked to complete a questionnaire following each episode of care (i.e. bed-bath) and then to attend one of three FG interviews: RNs with less than 2 years ICU experience; RNs with 2–5 years ICU experience; and RNs with greater than 5 years ICU experience. Results During the 28-day study period the four ICUs had 77.25 beds open. In phase one a total of 539 questionnaires were returned, representing 30.5% of episodes of patient bed-baths (based on 1767 bed occupancy and one bed-bath per patient per day). In 349 bed-bath episodes 54.7% patients were mechanically ventilated. The bed-bath was given between 02.00 and 06.00 h in 161 episodes (30%), took 15–30 min to complete (n = 195, 36.2%) and was completed within the last 8 h in 304 episodes (56.8%). Cleansing agents used were predominantly pH balanced soap or liquid soap and water (n = 379, 71%) in comparison to chlorhexidine impregnated sponges/cloths (n = 86, 16.1%) or other agents such as pre-packaged washcloths (n = 65, 12.2%). In 347 episodes (64.4%) emollients were not applied after the bed-bath. In phase two 12 FGs were conducted (three FGs at each ICU) with a total of 42 RN participants. Thematic analysis of FG transcripts across the three levels of RN ICU experience highlighted a transition of patient hygiene practice philosophy from shades of grey – falling in line for inexperienced clinicians to experienced clinicians concrete beliefs about patient bed-bath needs. Conclusions This study identified variation in process and products used in patient hygiene practices in four ICUs. Further study to improve patient outcomes is required to determine the appropriate timing of patient hygiene activities and cleansing agents used to improve skin integrity.
Resumo:
Since its initial proposal in 1998, alkaline hydrothermal processing has rapidly become an established technology for the production of titanate nanostructures. This simple, highly reproducible process has gained a strong research following since its conception. However, complete understanding and elucidation of nanostructure phase and formation have not yet been achieved. Without fully understanding phase, formation, and other important competing effects of the synthesis parameters on the final structure, the maximum potential of these nanostructures cannot be obtained. Therefore this study examined the influence of synthesis parameters on the formation of titanate nanostructures produced by alkaline hydrothermal treatment. The parameters included alkaline concentration, hydrothermal temperature, the precursor material‘s crystallite size and also the phase of the titanium dioxide precursor (TiO2, or titania). The nanostructure‘s phase and morphology was analysed using X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy (XPS), dynamic light scattering (non-invasive backscattering), nitrogen sorption, and Rietveld analysis were used to determine phase, for particle sizing, surface area determinations, and establishing phase concentrations, respectively. This project rigorously examined the effect of alkaline concentration and hydrothermal temperature on three commercially sourced and two self-prepared TiO2 powders. These precursors consisted of both pure- or mixed-phase anatase and rutile polymorphs, and were selected to cover a range of phase concentrations and crystallite sizes. Typically, these precursors were treated with 5–10 M sodium hydroxide (NaOH) solutions at temperatures between 100–220 °C. Both nanotube and nanoribbon morphologies could be produced depending on the combination of these hydrothermal conditions. Both titania and titanate phases are comprised of TiO6 units which are assembled in different combinations. The arrangement of these atoms affects the binding energy between the Ti–O bonds. Raman spectroscopy and XPS were therefore employed in a preliminary study of phase determination for these materials. The change in binding energy from a titania to a titanate binding energy was investigated in this study, and the transformation of titania precursor into nanotubes and titanate nanoribbons was directly observed by these methods. Evaluation of the Raman and XPS results indicated a strengthening in the binding energies of both the Ti (2p3/2) and O (1s) bands which correlated to an increase in strength and decrease in resolution of the characteristic nanotube doublet observed between 320 and 220 cm.1 in the Raman spectra of these products. The effect of phase and crystallite size on nanotube formation was examined over a series of temperatures (100.200 �‹C in 20 �‹C increments) at a set alkaline concentration (7.5 M NaOH). These parameters were investigated by employing both pure- and mixed- phase precursors of anatase and rutile. This study indicated that both the crystallite size and phase affect nanotube formation, with rutile requiring a greater driving force (essentially �\harsher. hydrothermal conditions) than anatase to form nanotubes, where larger crystallites forms of the precursor also appeared to impede nanotube formation slightly. These parameters were further examined in later studies. The influence of alkaline concentration and hydrothermal temperature were systematically examined for the transformation of Degussa P25 into nanotubes and nanoribbons, and exact conditions for nanostructure synthesis were determined. Correlation of these data sets resulted in the construction of a morphological phase diagram, which is an effective reference for nanostructure formation. This morphological phase diagram effectively provides a .recipe book�e for the formation of titanate nanostructures. Morphological phase diagrams were also constructed for larger, near phase-pure anatase and rutile precursors, to further investigate the influence of hydrothermal reaction parameters on the formation of titanate nanotubes and nanoribbons. The effects of alkaline concentration, hydrothermal temperature, crystallite phase and size are observed when the three morphological phase diagrams are compared. Through the analysis of these results it was determined that alkaline concentration and hydrothermal temperature affect nanotube and nanoribbon formation independently through a complex relationship, where nanotubes are primarily affected by temperature, whilst nanoribbons are strongly influenced by alkaline concentration. Crystallite size and phase also affected the nanostructure formation. Smaller precursor crystallites formed nanostructures at reduced hydrothermal temperature, and rutile displayed a slower rate of precursor consumption compared to anatase, with incomplete conversion observed for most hydrothermal conditions. The incomplete conversion of rutile into nanotubes was examined in detail in the final study. This study selectively examined the kinetics of precursor dissolution in order to understand why rutile incompletely converted. This was achieved by selecting a single hydrothermal condition (9 M NaOH, 160 °C) where nanotubes are known to form from both anatase and rutile, where the synthesis was quenched after 2, 4, 8, 16 and 32 hours. The influence of precursor phase on nanostructure formation was explicitly determined to be due to different dissolution kinetics; where anatase exhibited zero-order dissolution and rutile second-order. This difference in kinetic order cannot be simply explained by the variation in crystallite size, as the inherent surface areas of the two precursors were determined to have first-order relationships with time. Therefore, the crystallite size (and inherent surface area) does not affect the overall kinetic order of dissolution; rather, it determines the rate of reaction. Finally, nanostructure formation was found to be controlled by the availability of dissolved titanium (Ti4+) species in solution, which is mediated by the dissolution kinetics of the precursor.
Resumo:
Objective Uterine Papillary Serous Carcinoma (UPSC) is uncommon and accounts for less than 5% of all uterine cancers. Therefore the majority of evidence about the benefits of adjuvant treatment comes from retrospective case series. We conducted a prospective multi-centre non-randomized phase 2 clinical trial using four cycles of adjuvant paclitaxel plus carboplatin chemotherapy followed by pelvic radiotherapy, in order to evaluate the tolerability and safety of this approach. Methods This trial enrolled patients with newly diagnosed, previously untreated patients with stage 1b-4 (FIGO-1988) UPSC with a papillary serous component of at least 30%. Paclitaxel (175 mg/m2) and carboplatin (AUC 6) were administered on day 1 of each 3-week cycle for 4 cycles. Chemotherapy was followed by external beam radiotherapy to the whole pelvis (50.4 Gy over 5.5 weeks). Completion and toxicity of treatment (Common Toxicity Criteria, CTC) and quality of life measures were the primary outcome indicators. Results Twenty-nine of 31 patients completed treatment as planned. Dose reduction was needed in 9 patients (29%), treatment delay in 7 (23%), and treatment cessation in 2 patients (6.5%). Hematologic toxicity, grade 3 or 4 occurred in 19% (6/31) of patients. Patients' self-reported quality of life remained stable throughout treatment. Thirteen of the 29 patients with stages 1–3 disease (44.8%) recurred (average follow up 28.1 months, range 8–60 months). Conclusion This multimodal treatment is feasible, safe and tolerated reasonably well and would be suitable for use in multi-institutional prospective randomized clinical trials incorporating novel therapies in patients with UPSC.
Resumo:
Raman spectrum of burgessite, Co2(H2O)4[AsO3OH]2.H2O was studied, interpreted and compared with its infrared spectrum. The stretching and bending vibrations of (AsO3) and As-OH units together with the stretching, bending and libration modes of water molecules and hydroxyl ions were assigned. The range of O-H...O hydrogen bond lengths was inferred from the Raman and infrared spectra of burgessite. The presence of (AsO3OH)2- units in the crystal structure of burgessite was proved in agreement with its recently solved crystal structure. Raman and infrared spectra of erythrite inferred from the RRUFF database are used for comparison.
Resumo:
For several reasons, the Fourier phase domain is less favored than the magnitude domain in signal processing and modeling of speech. To correctly analyze the phase, several factors must be considered and compensated, including the effect of the step size, windowing function and other processing parameters. Building on a review of these factors, this paper investigates a spectral representation based on the Instantaneous Frequency Deviation, but in which the step size between processing frames is used in calculating phase changes, rather than the traditional single sample interval. Reflecting these longer intervals, the term delta-phase spectrum is used to distinguish this from instantaneous derivatives. Experiments show that mel-frequency cepstral coefficients features derived from the delta-phase spectrum (termed Mel-Frequency delta-phase features) can produce broadly similar performance to equivalent magnitude domain features for both voice activity detection and speaker recognition tasks. Further, it is shown that the fusion of the magnitude and phase representations yields performance benefits over either in isolation.