327 resultados para negative selection
Resumo:
Biased estimation has the advantage of reducing the mean squared error (MSE) of an estimator. The question of interest is how biased estimation affects model selection. In this paper, we introduce biased estimation to a range of model selection criteria. Specifically, we analyze the performance of the minimum description length (MDL) criterion based on biased and unbiased estimation and compare it against modern model selection criteria such as Kay's conditional model order estimator (CME), the bootstrap and the more recently proposed hook-and-loop resampling based model selection. The advantages and limitations of the considered techniques are discussed. The results indicate that, in some cases, biased estimators can slightly improve the selection of the correct model. We also give an example for which the CME with an unbiased estimator fails, but could regain its power when a biased estimator is used.
Resumo:
Automatic recognition of people is an active field of research with important forensic and security applications. In these applications, it is not always possible for the subject to be in close proximity to the system. Voice represents a human behavioural trait which can be used to recognise people in such situations. Automatic Speaker Verification (ASV) is the process of verifying a persons identity through the analysis of their speech and enables recognition of a subject at a distance over a telephone channel { wired or wireless. A significant amount of research has focussed on the application of Gaussian mixture model (GMM) techniques to speaker verification systems providing state-of-the-art performance. GMM's are a type of generative classifier trained to model the probability distribution of the features used to represent a speaker. Recently introduced to the field of ASV research is the support vector machine (SVM). An SVM is a discriminative classifier requiring examples from both positive and negative classes to train a speaker model. The SVM is based on margin maximisation whereby a hyperplane attempts to separate classes in a high dimensional space. SVMs applied to the task of speaker verification have shown high potential, particularly when used to complement current GMM-based techniques in hybrid systems. This work aims to improve the performance of ASV systems using novel and innovative SVM-based techniques. Research was divided into three main themes: session variability compensation for SVMs; unsupervised model adaptation; and impostor dataset selection. The first theme investigated the differences between the GMM and SVM domains for the modelling of session variability | an aspect crucial for robust speaker verification. Techniques developed to improve the robustness of GMMbased classification were shown to bring about similar benefits to discriminative SVM classification through their integration in the hybrid GMM mean supervector SVM classifier. Further, the domains for the modelling of session variation were contrasted to find a number of common factors, however, the SVM-domain consistently provided marginally better session variation compensation. Minimal complementary information was found between the techniques due to the similarities in how they achieved their objectives. The second theme saw the proposal of a novel model for the purpose of session variation compensation in ASV systems. Continuous progressive model adaptation attempts to improve speaker models by retraining them after exploiting all encountered test utterances during normal use of the system. The introduction of the weight-based factor analysis model provided significant performance improvements of over 60% in an unsupervised scenario. SVM-based classification was then integrated into the progressive system providing further benefits in performance over the GMM counterpart. Analysis demonstrated that SVMs also hold several beneficial characteristics to the task of unsupervised model adaptation prompting further research in the area. In pursuing the final theme, an innovative background dataset selection technique was developed. This technique selects the most appropriate subset of examples from a large and diverse set of candidate impostor observations for use as the SVM background by exploiting the SVM training process. This selection was performed on a per-observation basis so as to overcome the shortcoming of the traditional heuristic-based approach to dataset selection. Results demonstrate the approach to provide performance improvements over both the use of the complete candidate dataset and the best heuristically-selected dataset whilst being only a fraction of the size. The refined dataset was also shown to generalise well to unseen corpora and be highly applicable to the selection of impostor cohorts required in alternate techniques for speaker verification.
Resumo:
This naturalistic study investigated the mechanisms of change in measures of negative thinking and in 24-h urinary metabolites of noradrenaline (norepinephrine), dopamine and serotonin in a sample of 43 depressed hospital patients attending an eight-session group cognitive behavior therapy program. Most participants (91%) were taking antidepressant medication throughout the therapy period according to their treating Psychiatrists' prescriptions. The sample was divided into outcome categories (19 Responders and 24 Non-responders) on the basis of a clinically reliable change index [Jacobson, N.S., & Truax, P., 1991. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59, 12–19.] applied to the Beck Depression Inventory scores at the end of the therapy. Results of repeated measures analysis of variance [ANOVA] analyses of variance indicated that all measures of negative thinking improved significantly during therapy, and significantly more so in the Responders as expected. The treatment had a significant impact on urinary adrenaline and metadrenaline excretion however, these changes occurred in both Responders and Non-responders. Acute treatment did not significantly influence the six other monoamine metabolites. In summary, changes in urinary monoamine levels during combined treatment for depression were not associated with self-reported changes in mood symptoms.
Resumo:
Negative mood regulation (NMR) expectancies have been linked to substance problems in previous research, but the neurobiological correlates of NMR are unknown. In the present study, NMR was examined in relation to self-report indices of frontal lobe functioning, mood and alcohol use in 166 volunteers of both genders who ranged in age from 17 to 43 years. Contrary to expectations based on previous findings in addicts and problem drinkers, scores on the NMR scale did not differ between Low Risk and High Risk drinkers as defined by the Alcohol Use Disorders Identification Test (AUDIT). However, NMR scores were significantly negatively correlated with all three indices of frontal lobe dysfunction on the Frontal Systems Behavior Scale (FrSBe) Self-Rating Form as well as with all three indices of negative mood on the Depression Anxiety Stress Scales (DASS), which in turn were all positively correlated with FrSBe. Path analyses indicated that NMR partially mediated the direct effects of frontal lobe dysfunction (as indexed by FrSBe) on DASS Stress and DASS Depression. Further, the High Risk drinkers scored significantly higher on the Disinhibition and Executive Dysfunction indices of the FrSBe than did Low Risk drinkers. Results are consistent with the notion that NMR is a frontal lobe function.
Resumo:
The recently proposed data-driven background dataset refinement technique provides a means of selecting an informative background for support vector machine (SVM)-based speaker verification systems. This paper investigates the characteristics of the impostor examples in such highly-informative background datasets. Data-driven dataset refinement individually evaluates the suitability of candidate impostor examples for the SVM background prior to selecting the highest-ranking examples as a refined background dataset. Further, the characteristics of the refined dataset were analysed to investigate the desired traits of an informative SVM background. The most informative examples of the refined dataset were found to consist of large amounts of active speech and distinctive language characteristics. The data-driven refinement technique was shown to filter the set of candidate impostor examples to produce a more disperse representation of the impostor population in the SVM kernel space, thereby reducing the number of redundant and less-informative examples in the background dataset. Furthermore, data-driven refinement was shown to provide performance gains when applied to the difficult task of refining a small candidate dataset that was mis-matched to the evaluation conditions.
Resumo:
This study assesses the recently proposed data-driven background dataset refinement technique for speaker verification using alternate SVM feature sets to the GMM supervector features for which it was originally designed. The performance improvements brought about in each trialled SVM configuration demonstrate the versatility of background dataset refinement. This work also extends on the originally proposed technique to exploit support vector coefficients as an impostor suitability metric in the data-driven selection process. Using support vector coefficients improved the performance of the refined datasets in the evaluation of unseen data. Further, attempts are made to exploit the differences in impostor example suitability measures from varying features spaces to provide added robustness.
Resumo:
We investigate whether characteristics of the home country capital environment, such as information disclosure and investor rights protection continue to affect ADRs cross-listed in the U.S. Using microstructure measures as proxies for adverse selection, we find that characteristics of the home markets continue to be relevant, especially for emerging market firms. Less transparent disclosure, poorer protection of investor rights and weaker legal institutions are associated with higher levels of information asymmetry. Developed market firms appear to be affected by whether or not home business laws are common law or civil law legal origin. Our finding contributes to the bonding literature. It suggests that cross-listing in the U.S. should not be viewed as a substitute for improvement in the quality of local institutions, and attention must be paid to improve investor protection in order to achieve the full benefits of improved disclosure. Improvement in the domestic capital market environment can attract more investors even for U.S. cross-listed firms.
Resumo:
This paper investigates the role of social capital on the reduction of short and long run negative health effects associated with stress, as well as indicators of burnout among police officers. Despite the large volume of research on either social capital or the health effects of stress, the interaction of these factors remains an underexplored topic. In this empirical analysis we aim to reduce such a shortcoming focusing on a highly stressful and emotionally draining work environment, namely law enforcement agents who perform as an essential part of maintaining modern society. Using a multivariate regression analysis focusing on three different proxies of health and three proxies for social capital conducting also several robustness checks, we find strong evidence that increased levels of social capital is highly correlated with better health outcomes. Additionally we observe that while social capital at work is very important, social capital in the home environment and work-life balance are even more important. From a policy perspective, our findings suggest that work and stress programs should actively encourage employees to build stronger social networks as well as incorporate better working/home life arrangements.
Resumo:
Various piezoelectric polymers based on polyvinylidene fluoride (PVDF) are of interest for large aperture space-based telescopes. Dimensional adjustments of adaptive polymer films depend on charge deposition and require a detailed understanding of the piezoelectric material responses which are expected to deteriorate owing to strong vacuum UV, � -, X-ray, energetic particles and atomic oxygen exposure. We have investigated the degradation of PVDF and its copolymers under various stress environments detrimental to reliable operation in space. Initial radiation aging studies have shown complex material changes with lowered Curie temperatures, complex material changes with lowered melting points, morphological transformations and significant crosslinking, but little influence on piezoelectric d33 constants. Complex aging processes have also been observed in accelerated temperature environments inducing annealing phenomena and cyclic stresses. The results suggest that poling and chain orientation are negatively affected by radiation and temperature exposure. A framework for dealing with these complex material qualification issues and overall system survivability predictions in low earth orbit conditions has been established. It allows for improved material selection, feedback for manufacturing and processing, material optimization/stabilization strategies and provides guidance on any alternative materials.
Resumo:
Web service composition is an important problem in web service based systems. It is about how to build a new value-added web service using existing web services. A web service may have many implementations, all of which have the same functionality, but may have different QoS values. Thus, a significant research problem in web service composition is how to select a web service implementation for each of the web services such that the composite web service gives the best overall performance. This is so-called optimal web service selection problem. There may be mutual constraints between some web service implementations. Sometimes when an implementation is selected for one web service, a particular implementation for another web service must be selected. This is so called dependency constraint. Sometimes when an implementation for one web service is selected, a set of implementations for another web service must be excluded in the web service composition. This is so called conflict constraint. Thus, the optimal web service selection is a typical constrained ombinatorial optimization problem from the computational point of view. This paper proposes a new hybrid genetic algorithm for the optimal web service selection problem. The hybrid genetic algorithm has been implemented and evaluated. The evaluation results have shown that the hybrid genetic algorithm outperforms other two existing genetic algorithms when the number of web services and the number of constraints are large.
Resumo:
Understanding perception of wellness in older adults is a question to be understood against the backdrop of concerns about whether global ageing and the ‘bulge’ of ageing baby boomers will increase health care cost beyond what modern economies can deal with. Older adults who age in a healthy way and who take responsibility for their own health offer a positive alternative and change the perception that older adults are a burden on their society’s health system. The concept of successful ageing introduced by Rowe and Kahn (1987; 1997) suggested that older adults age successfully if they avoid disease and disability, maintain high cognitive and physical functioning and remain actively engaged with life. This concept, however, did not reflect older adults’ own perceptions of what constitutes successful ageing or how perceptions of wellness or health-related quality of life influenced the older adult’s understanding of his or her own health and ageing. A research project was designed to examine older adults’ perceptions of wellness in order to gain an understanding of the factors that influence perception of their own wellness. Specifically, the research wanted to explore two aspects: whether belonging to a unique organisation, in this instance a Returned Services Club, influenced perceptions of wellness; and whether there are significant gender differences for the perception of wellness. A mixed method project with two consecutive studies was designed to answer these questions: a quantitative survey of members of a Returned Services Club and of the surrounding community in Queensland, Australia, and a qualitative study conducting focus groups to explore findings of the survey. The results of the survey were used to determine the composition of the focus groups. The participants for the first study, (N=257), community living adults 65 years and older, were chosen from the membership role of a Returned Services Club or recruited by personal approach from the community surrounding the Services Club. Participants completed a survey that consisted of a perception of wellness instrument, a health-related quality of life instrument, and questions on morbidities, modifiable life style factors and demographics. Data analysis found that a number of individual factors influenced perception of wellness and health-related quality of life. Positive influences were independent mobility, exercise and gambling at non-hazardous levels, and negative influences were hearing loss, memory problems, chronic disease and being single. Membership of the Services Club did not contribute to perception of wellness beyond being a member of a social group. While there may have been an expectation that members of an organisation that is traditionally associated with high alcohol use and problematic gambling may have lower perceptions of wellness, this study suggested that the negative influences may have been counteracted by the positive effects of social interaction, thus having neither negative nor positive influences on perception of wellness. There were significant differences in perception of wellness and in health-related quality of life for women and men. The most significant difference was for women aged 85-90 who had significantly lower scores for perception of wellness than men or than any other age group. This result was the impetus for conducting focus groups with adults aged 85-90 years of age. Focus groups were conducted with 24 women and four men aged 85-90 to explore the survey findings for this age group. Results from the focus groups indicated that for older adults perception of wellness was a multidimensional construct of more complexity than indicated by the survey instrument. Elite older women (women over 85 years of age) related their perception of wellness to their ability to do what they wanted to do, and what they wanted to do significantly more than anything else, was to stay connected to family, friends and the community to which they belonged. From the focus group results it appeared that elite older women identified with the three elements of successful ageing – low incidence of disability and disease, high physical and cognitive functioning, and active engagement with life – but not in a flat structure. It appears that for elite older women good physical and mental health function to enable social connectedness. It is the elements of health that impact on the ability to do what they wanted to do that were identified as key factors: independent mobility, hearing and memory - factors that impact on the ability to interact socially. These elements were only identified when they impacted on the person’s ability to do what they wanted to do, for example mobility problems that were managed were not considered a problem. The study also revealed that older women use selection, optimisation and compensation to meet their goal of staying socially connected. The shopping centre was a key factor in this goal and older women used shopping centres to stay connected to the community and for exercise as well as shopping. Personal and public safety and other environmental concerns were viewed in the same context of enabling or disabling social connectedness. This suggested that for elite older women the model of successful ageing was hierarchical rather than flat, with social connectedness at the top, supported by cognitive functioning and good physical and mental health. In conclusion, this research revealed that perception of wellness in older adults is a complex, multidimensional construct. For older adults good health is related to social connectedness and is not a goal in itself. Health professionals and the community at large have a responsibility to take into account the ability of the older adult to stay socially connected to their community and to enable this, if the goal is to keep older adults healthy for as long as possible. Maintaining or improving perception of wellness in older adults will require a broad biopsychosocial approach that utilises findings such as older adults’ use of shopping centres for non-shopping purposes, concerns about personal and environmental safety and supporting older adults to maintain or improve their social connectedness to their communities.