150 resultados para morphological population balance model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human Ureaplasma species are the most frequently isolated bacteria from the upper genital tract of pregnant women and can cause clinically asymptomatic, intra-uterine infections, which are difficult to treat with antimicrobials. Ureaplasma infection of the upper genital tract during pregnancy has been associated with numerous adverse outcomes including preterm birth, chorioamnionitis and neonatal respiratory diseases. The mechanisms by which ureaplasmas are able to chronically colonise the amniotic fluid and avoid eradication by (i) the host immune response and (ii) maternally-administered antimicrobials, remain virtually unexplored. To address this gap within the literature, this study investigated potential mechanisms by which ureaplasmas are able to cause chronic, intra-amniotic infections in an established ovine model. In this PhD program of research the effectiveness of standard, maternal erythromycin for the treatment of chronic, intra-amniotic ureaplasma infections was evaluated. At 55 days of gestation pregnant ewes received an intra-amniotic injection of either: a clinical Ureaplasma parvum serovar 3 isolate that was sensitive to macrolide antibiotics (n = 16); or 10B medium (n = 16). At 100 days of gestation, ewes were then randomised to receive either maternal erythromycin treatment (30 mg/kg/day for four days) or no treatment. Ureaplasmas were isolated from amniotic fluid, chorioamnion, umbilical cord and fetal lung specimens, which were collected at the time of preterm delivery of the fetus (125 days of gestation). Surprisingly, the numbers of ureaplasmas colonising the amniotic fluid and fetal tissues were not different between experimentally-infected animals that received erythromycin treatment or infected animals that did not receive treatment (p > 0.05), nor were there any differences in fetal inflammation and histological chorioamnionitis between these groups (p > 0.05). These data demonstrate the inability of maternal erythromycin to eradicate intra-uterine ureaplasma infections. Erythromycin was detected in the amniotic fluid of animals that received antimicrobial treatment (but not in those that did not receive treatment) by liquid chromatography-mass spectrometry; however, the concentrations were below therapeutic levels (<10 – 76 ng/mL). These findings indicate that the ineffectiveness of standard, maternal erythromycin treatment of intra-amniotic ureaplasma infections may be due to the poor placental transfer of this drug. Subsequently, the phenotypic and genotypic characteristics of ureaplasmas isolated from the amniotic fluid and chorioamnion of pregnant sheep after chronic, intra-amniotic infection and low-level exposure to erythromycin were investigated. At 55 days of gestation twelve pregnant ewes received an intra-amniotic injection of a clinical U. parvum serovar 3 isolate, which was sensitive to macrolide antibiotics. At 100 days of gestation, ewes received standard maternal erythromycin treatment (30 mg/kg/day for four days, n = 6) or saline (n = 6). Preterm fetuses were surgically delivered at 125 days of gestation and ureaplasmas were cultured from the amniotic fluid and the chorioamnion. The minimum inhibitory concentrations (MICs) of erythromycin, azithromycin and roxithromycin were determined for cultured ureaplasma isolates, and antimicrobial susceptibilities were different between ureaplasmas isolated from the amniotic fluid (MIC range = 0.08 – 1.0 mg/L) and chorioamnion (MIC range = 0.06 – 5.33 mg/L). However, the increased resistance to macrolide antibiotics observed in chorioamnion ureaplasma isolates occurred independently of exposure to erythromycin in vivo. Remarkably, domain V of the 23S ribosomal RNA gene (which is the target site of macrolide antimicrobials) of chorioamnion ureaplasmas demonstrated significant variability (125 polymorphisms out of 422 sequenced nucleotides, 29.6%) when compared to the amniotic fluid ureaplasma isolates and the inoculum strain. This sequence variability did not occur as a consequence of exposure to erythromycin, as the nucleotide substitutions were identical between chorioamnion ureaplasmas isolated from different animals, including those that did not receive erythromycin treatment. We propose that these mosaic-like 23S ribosomal RNA gene sequences may represent gene fragments transferred via horizontal gene transfer. The significant differences observed in (i) susceptibility to macrolide antimicrobials and (ii) 23S ribosomal RNA sequences of ureaplasmas isolated from the amniotic fluid and chorioamnion suggests that the anatomical site from which they were isolated may exert selective pressures that alter the socio-microbiological structure of the bacterial population, by selecting for genetic changes and altered antimicrobial susceptibility profiles. The final experiment for this PhD examined antigenic size variation of the multiple banded antigen (MBA, a surface-exposed lipoprotein and predicted ureaplasmal virulence factor) in chronic, intra-amniotic ureaplasma infections. Previously defined ‘virulent-derived’ and ‘avirulent-derived’ clonal U. parvum serovar 6 isolates (each expressing a single MBA protein) were injected into the amniotic fluid of pregnant ewes (n = 20) at 55 days of gestation, and amniotic fluid was collected by amniocentesis every two weeks until the time of near-term delivery of the fetus (at 140 days of gestation). Both the avirulent and virulent clonal ureaplasma strains generated MBA size variants (ranging in size from 32 – 170 kDa) within the amniotic fluid of pregnant ewes. The mean number of MBA size variants produced within the amniotic fluid was not different between the virulent (mean = 4.2 MBA variants) and avirulent (mean = 4.6 MBA variants) ureaplasma strains (p = 0.87). Intra-amniotic infection with the virulent strain was significantly associated with the presence of meconium-stained amniotic fluid (p = 0.01), which is an indicator of fetal distress in utero. However, the severity of histological chorioamnionitis was not different between the avirulent and virulent groups. We demonstrated that ureaplasmas were able to persist within the amniotic fluid of pregnant sheep for 85 days, despite the host mounting an innate and adaptive immune response. Pro-inflammatory cytokines (interleukin (IL)-1â, IL-6 and IL-8) were elevated within the chorioamnion tissue of pregnant sheep from both the avirulent and virulent treatment groups, and this was significantly associated with the production of anti-ureaplasma IgG antibodies within maternal sera (p < 0.05). These findings suggested that the inability of the host immune response to eradicate ureaplasmas from the amniotic cavity may be due to continual size variation of MBA surface-exposed epitopes. Taken together, these data confirm that ureaplasmas are able to cause long-term in utero infections in a sheep model, despite standard antimicrobial treatment and the development of a host immune response. The overall findings of this PhD project suggest that ureaplasmas are able to cause chronic, intra-amniotic infections due to (i) the limited placental transfer of erythromycin, which prevents the accumulation of therapeutic concentrations within the amniotic fluid; (ii) the ability of ureaplasmas to undergo rapid selection and genetic variation in vivo, resulting in ureaplasma isolates with variable MICs to macrolide antimicrobials colonising the amniotic fluid and chorioamnion; and (iii) antigenic size variation of the MBA, which may prevent eradication of ureaplasmas by the host immune response and account for differences in neonatal outcomes. The outcomes of this program of study have improved our understanding of the biology and pathogenesis of this highly adapted microorganism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Hallux valgus (HV) is a foot deformity commonly seen in medical practice, often accompanied by significant functional disability and foot pain. Despite frequent mention in a diverse body of literature, a precise estimate of the prevalence of HV is difficult to ascertain. The purpose of this systematic review was to investigate prevalence of HV in the overall population and evaluate the influence of age and gender. METHODS: Electronic databases (Medline, Embase, and CINAHL) and reference lists of included papers were searched to June 2009 for papers on HV prevalence without language restriction. MeSH terms and keywords were used relating to HV or bunions, prevalence and various synonyms. Included studies were surveys reporting original data for prevalence of HV or bunions in healthy populations of any age group. Surveys reporting prevalence data grouped with other foot deformities and in specific disease groups (e.g. rheumatoid arthritis, diabetes) were excluded. Two independent investigators quality rated all included papers on the Epidemiological Appraisal Instrument. Data on raw prevalence, population studied and methodology were extracted. Prevalence proportions and the standard error were calculated, and meta-analysis was performed using a random effects model. RESULTS: A total of 78 papers reporting results of 76 surveys (total 496,957 participants) were included and grouped by study population for meta-analysis. Pooled prevalence estimates for HV were 23% in adults aged 18-65 years (CI: 16.3 to 29.6) and 35.7% in elderly people aged over 65 years (CI: 29.5 to 42.0). Prevalence increased with age and was higher in females [30% (CI: 22 to 38)] compared to males [13% (CI: 9 to 17)]. Potential sources of bias were sampling method, study quality and method of HV diagnosis. CONCLUSIONS: Notwithstanding the wide variation in estimates, it is evident that HV is prevalent; more so in females and with increasing age. Methodological quality issues need to be addressed in interpreting reports in the literature and in future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optimal design methods have been proposed to determine the best sampling times when sparse blood sampling is required in clinical pharmacokinetic studies. However, the optimal blood sampling time points may not be feasible in clinical practice. Sampling windows, a time interval for blood sample collection, have been proposed to provide flexibility in blood sampling times while preserving efficient parameter estimation. Because of the complexity of the population pharmacokinetic models, which are generally nonlinear mixed effects models, there is no analytical solution available to determine sampling windows. We propose a method for determination of sampling windows based on MCMC sampling techniques. The proposed method attains a stationary distribution rapidly and provides time-sensitive windows around the optimal design points. The proposed method is applicable to determine sampling windows for any nonlinear mixed effects model although our work focuses on an application to population pharmacokinetic models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Bactrocera dorsalis s.s. is a pestiferous tephritid fruit fly distributed from Pakistan to the Pacific, with the Thai/Malay peninsula its southern limit. Sister pest taxa, B. papayae and B. philippinensis, occur in the southeast Asian archipelago and the Philippines, respectively. The relationship among these species is unclear due to their high molecular and morphological similarity. This study analysed population structure of these three species within a southeast Asian biogeographical context to assess potential dispersal patterns and the validity of their current taxonomic status. Results Geometric morphometric results generated from 15 landmarks for wings of 169 flies revealed significant differences in wing shape between almost all sites following canonical variate analysis. For the combined data set there was a greater isolation-by-distance (IBD) effect under a ‘non-Euclidean’ scenario which used geographical distances within a biogeographical ‘Sundaland context’ (r2 = 0.772, P < 0.0001) as compared to a ‘Euclidean’ scenario for which direct geographic distances between sample sites was used (r2 = 0.217, P < 0.01). COI sequence data were obtained for 156 individuals and yielded 83 unique haplotypes with no correlation to current taxonomic designations via a minimum spanning network. BEAST analysis provided a root age and location of 540kya in northern Thailand, with migration of B. dorsalis s.l. into Malaysia 470kya and Sumatra 270kya. Two migration events into the Philippines are inferred. Sequence data revealed a weak but significant IBD effect under the ‘non-Euclidean’ scenario (r2 = 0.110, P < 0.05), with no historical migration evident between Taiwan and the Philippines. Results are consistent with those expected at the intra-specific level. Conclusions Bactrocera dorsalis s.s., B. papayae and B. philippinensis likely represent one species structured around the South China Sea, having migrated from northern Thailand into the southeast Asian archipelago and across into the Philippines. No migration is apparent between the Philippines and Taiwan. This information has implications for quarantine, trade and pest management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Seasonal changes in cardiovascular disease (CVD) risk factors may be due to exposure to seasonal environmental variables like temperature and acute infections or seasonal behavioural patterns in physical activity and diet. Investigating the seasonal pattern of risk factors should help determine the causes of the seasonal pattern in CVD. Few studies have investigated the seasonal variation in risk factors using repeated measurements from the same individual, which is important as individual and population seasonal patterns may differ. Methods The authors investigated the seasonal pattern in systolic and diastolic blood pressure, heart rate, body weight, total cholesterol, triglycerides, high-density lipoprotein cholesterol, C reactive protein and fibrinogen. Measurements came from 38 037 participants in the population-based cohort, the Tromsø Study, examined up to eight times from 1979 to 2008. Individual and population seasonal patterns were estimated using a cosinor in a mixed model. Results All risk factors had a highly statistically significant seasonal pattern with a peak time in winter, except for triglycerides (peak in autumn), C reactive protein and fibrinogen (peak in spring). The sizes of the seasonal variations were clinically modest. Conclusions Although the authors found highly statistically significant individual seasonal patterns for all risk factors, the sizes of the changes were modest, probably because this subarctic population is well adapted to a harsh climate. Better protection against seasonal risk factors like cold weather could help reduce the winter excess in CVD observed in milder climates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a hybrid model, created by coupling a continuum and an agent-based model of infectious disease. The framework of the hybrid model provides a mechanism to study the spread of infection at both the individual and population levels. This approach captures the stochastic spatial heterogeneity at the individual level, which is directly related to deterministic population level properties. This facilitates the study of spatial aspects of the epidemic process. A spatial analysis, involving counting the number of infectious agents in equally sized bins, reveals when the spatial domain is nonhomogeneous.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal models typically require a known genetic pedigree to estimate quantitative genetic parameters. Here we test whether animal models can alternatively be based on estimates of relatedness derived entirely from molecular marker data. Our case study is the morphology of a wild bird population, for which we report estimates of the genetic variance-covariance matrices (G) of six morphological traits using three methods: the traditional animal model; a molecular marker-based approach to estimate heritability based on Ritland's pairwise regression method; and a new approach using a molecular genealogy arranged in a relatedness matrix (R) to replace the pedigree in an animal model. Using the traditional animal model, we found significant genetic variance for all six traits and positive genetic covariance among traits. The pairwise regression method did not return reliable estimates of quantitative genetic parameters in this population, with estimates of genetic variance and covariance typically being very small or negative. In contrast, we found mixed evidence for the use of the pedigree-free animal model. Similar to the pairwise regression method, the pedigree-free approach performed poorly when the full-rank R matrix based on the molecular genealogy was employed. However, performance improved substantially when we reduced the dimensionality of the R matrix in order to maximize the signal to noise ratio. Using reduced-rank R matrices generated estimates of genetic variance that were much closer to those from the traditional model. Nevertheless, this method was less reliable at estimating covariances, which were often estimated to be negative. Taken together, these results suggest that pedigree-free animal models can recover quantitative genetic information, although the signal remains relatively weak. It remains to be determined whether this problem can be overcome by the use of a more powerful battery of molecular markers and improved methods for reconstructing genealogies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Island races of passerine birds display repeated evolution towards larger body size compared with their continental ancestors. The Capricorn silvereye (Zosterops lateralis chlorocephalus) has become up to six phenotypic standard deviations bigger in several morphological measures since colonization of an island approximately 4000 years ago. We estimated the genetic variance-covariance (G) matrix using full-sib and 'animal model' analyses, and selection gradients, for six morphological traits under field conditions in three consecutive cohorts of nestlings. Significant levels of genetic variance were found for all traits. Significant directional selection was detected for wing and tail lengths in one year and quadratic selection on culmen depth in another year. Although selection gradients on many traits were negative, the predicted evolutionary response to selection of these traits for all cohorts was uniformly positive. These results indicate that the G matrix and predicted evolutionary responses are consistent with those of a population evolving in the manner observed in the island passerine trend, that is, towards larger body size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2004 Prahalad made managers aware of the great economic opportunity that the population at the BoP (Base of the Pyramid) represents for business in the form of new potential consumers. However, MNCs (Multi-National Corporations) generally continue to penetrate low income markets with the same strategies used at the top of the pyramid or choose not to invest at all in these regions because intimidated by having to re-envision their business models. The introduction of not re-arranged business models and products into developing countries has done nothing more over the years than induce new needs and develop new dependencies. By conducting a critical review of the literature this paper investigates and compares innovative approaches to operate in developing markets, which depart from the usual Corporate Social Responsibility marketing rhetoric, and rather consider the potential consumer at the BoP as a ring of continuity in the value chain − a resource that can itself produce value. Based on the concept of social embeddedness (London & Hart, 2004) and the principle that an open system contemplates different provisions (i.e. MNCs bring processes and technology, NGOs cultural mediating skills, governments laws and regulations, native people know-how and traditions), this paper concludes with a new business model reference that empowers all actors to contribute to value creation, while allowing MNCs to support local growth by turning what Prahalad called ‘inclusive capitalism’ into a more sustainable ‘inclusive entrepreneurial development’.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sustainable urban development and the liveability of a city are increasingly important issues in the context of land use planning and infrastructure management. In recent years, the promotion of sustainable urban development in Australia and overseas is facing various physical, socioeconomic and environmental challenges. These challenges and problems arise from the lack of capability of local governments to accommodate the needs of the population and economy in a relatively short timeframe. The planning of economic growth and development is often dealt with separately and not included in the conventional land use planning process. There is also a sharp rise in the responsibilities and roles of local government for infrastructure planning and management. This increase in responsibilities means that local elected officials and urban planners have less time to prepare background information and make decisions. The Brisbane Urban Growth Model has proven initially successful in providing a dynamic platform to ensure timely and coordinated delivery of urban infrastructure. Most importantly, this model is the first step for local governments in moving toward a systematic approach to pursuing sustainable and effective urban infrastructure management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose – As a consequence of rapid urbanisation and globalisation, cities have become the engines of population and economic growth. Hence, natural resources in and around the cities have been exposed to externalities of urban development processes. This paper introduces a new sustainability assessment approach that is tested in a pilot study. The paper aims to assist policy-makers and planners investigating the impacts of development on environmental systems, and produce effective policies for sustainable urban development. Design/methodology/approach – The paper introduces an indicator-based indexing model entitled “Indexing Model for the Assessment of Sustainable Urban Ecosystems” (ASSURE). The ASSURE indexing model produces a set of micro-level environmental sustainability indices that is aimed to be used in the evaluation and monitoring of the interaction between human activities and urban ecosystems. The model is an innovative approach designed to assess the resilience of ecosystems towards impacts of current development plans and the results serve as a guide for policymakers to take actions towards achieving sustainability. Findings – The indexing model has been tested in a pilot case study within the Gold Coast City, Queensland, Australia. This paper presents the methodology of the model and outlines the preliminary findings of the pilot study. The paper concludes with a discussion on the findings and recommendations put forward for future development and implementation of the model. Originality/value – Presently, there is a few sustainability indices developed to measure the sustainability at local, regional, national and international levels. However, due to challenges in data collection difficulties and availability of local data, there is no effective assessment model at the microlevel that the assessment of urban ecosystem sustainability accurately. The model introduced in this paper fills this gap by focusing on parcel-scale and benchmarking the environmental performance in micro-level.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virtual Reality (VR) techniques are increasingly being used for education about and in the treatment of certain types of mental illness. Research indicates that VR is delivering on its promised potential to provide enhanced training and treatment outcomes through incorporation of this high-end technology. Schizophrenia is a mental disorder affecting 1-2% of the population, and it is estimated 12-16% of hospital beds in Australia are occupied by patients with psychosis. Tragically, there is also an increased risk of suicide associated with this diagnosis. A significant research project being undertaken across the University of Queensland faculties of Health Sciences and EPSA (Engineering, Physical Sciences and Architecture) has constructed a number of virtual environments that reproduce the phenomena experienced by patients who have psychosis. Symptoms of psychosis include delusions, hallucinations and thought disorder. The VR environment will allow behavioral, exposure therapies to be conducted with exactly controlled exposure stimuli and an expected reduction in risk of harm. This paper reports on the current work of the project, previous stages of software development and the final goal to introduce VR to medical consulting rooms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive air samplers (PAS) consisting of polyurethane foam (PUF) disks were deployed at 6 outdoor air monitoring stations in different land use categories (commercial, industrial, residential and semi-rural) to assess the spatial distribution of polybrominated diphenyl ethers (PBDEs) in the Brisbane airshed. Air monitoring sites covered an area of 1143 km2 and PAS were allowed to accumulate PBDEs in the city's airshed over three consecutive seasons commencing in the winter of 2008. The average sum of five (∑5) PBDEs (BDEs 28, 47, 99, 100 and 209) levels were highest at the commercial and industrial sites (12.7 ± 5.2 ng PUF−1), which were relatively close to the city center and were a factor of 8 times higher than residential and semi-rural sites located in outer Brisbane. To estimate the magnitude of the urban ‘plume’ an empirical exponential decay model was used to fit PAS data vs. distance from the CBD, with the best correlation observed when the particulate bound BDE-209 was not included (∑5-209) (r2 = 0.99), rather than ∑5 (r2 = 0.84). At 95% confidence intervals the model predicts that regardless of site characterization, ∑5-209 concentrations in a PAS sample taken between 4–10 km from the city centre would be half that from a sample taken from the city centre and reach a baseline or plateau (0.6 to 1.3 ng PUF−1), approximately 30 km from the CBD. The observed exponential decay in ∑5-209 levels over distance corresponded with Brisbane's decreasing population density (persons/km2) from the city center. The residual error associated with the model increased significantly when including BDE-209 levels, primarily due to the highest level (11.4 ± 1.8 ng PUF−1) being consistently detected at the industrial site, indicating a potential primary source at this site. Active air samples collected alongside the PAS at the industrial air monitoring site (B) indicated BDE-209 dominated congener composition and was entirely associated with the particulate phase. This study demonstrates that PAS are effective tools for monitoring citywide regional differences however, interpretation of spatial trends for POPs which are predominantly associated with the particulate phase such as BDE-209, may be restricted to identifying ‘hotspots’ rather than broad spatial trends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a generalised linear mixed model (GLMM) approach for understanding spatial patterns of participation in population health screening, in the presence of multiple screening facilities. The models presented have dual focus, namely the prediction of expected patient flows from regions to services and relative rates of participation by region- service combination, with both outputs having meaningful implications for the monitoring of current service uptake and provision. The novelty of this paper lies with the former focus, and an approach for distributing expected participation by region based on proximity to services is proposed. The modelling of relative rates of participation is achieved through the combination of different random effects, as a means of assigning excess participation to different sources. The methodology is applied to participation data collected from a government-funded mammography program in Brisbane, Australia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to estimate the asset reliability and the probability of failure is critical to reducing maintenance costs, operation downtime, and safety hazards. Predicting the survival time and the probability of failure in future time is an indispensable requirement in prognostics and asset health management. In traditional reliability models, the lifetime of an asset is estimated using failure event data, alone; however, statistically sufficient failure event data are often difficult to attain in real-life situations due to poor data management, effective preventive maintenance, and the small population of identical assets in use. Condition indicators and operating environment indicators are two types of covariate data that are normally obtained in addition to failure event and suspended data. These data contain significant information about the state and health of an asset. Condition indicators reflect the level of degradation of assets while operating environment indicators accelerate or decelerate the lifetime of assets. When these data are available, an alternative approach to the traditional reliability analysis is the modelling of condition indicators and operating environment indicators and their failure-generating mechanisms using a covariate-based hazard model. The literature review indicates that a number of covariate-based hazard models have been developed. All of these existing covariate-based hazard models were developed based on the principle theory of the Proportional Hazard Model (PHM). However, most of these models have not attracted much attention in the field of machinery prognostics. Moreover, due to the prominence of PHM, attempts at developing alternative models, to some extent, have been stifled, although a number of alternative models to PHM have been suggested. The existing covariate-based hazard models neglect to fully utilise three types of asset health information (including failure event data (i.e. observed and/or suspended), condition data, and operating environment data) into a model to have more effective hazard and reliability predictions. In addition, current research shows that condition indicators and operating environment indicators have different characteristics and they are non-homogeneous covariate data. Condition indicators act as response variables (or dependent variables) whereas operating environment indicators act as explanatory variables (or independent variables). However, these non-homogenous covariate data were modelled in the same way for hazard prediction in the existing covariate-based hazard models. The related and yet more imperative question is how both of these indicators should be effectively modelled and integrated into the covariate-based hazard model. This work presents a new approach for addressing the aforementioned challenges. The new covariate-based hazard model, which termed as Explicit Hazard Model (EHM), explicitly and effectively incorporates all three available asset health information into the modelling of hazard and reliability predictions and also drives the relationship between actual asset health and condition measurements as well as operating environment measurements. The theoretical development of the model and its parameter estimation method are demonstrated in this work. EHM assumes that the baseline hazard is a function of the both time and condition indicators. Condition indicators provide information about the health condition of an asset; therefore they update and reform the baseline hazard of EHM according to the health state of asset at given time t. Some examples of condition indicators are the vibration of rotating machinery, the level of metal particles in engine oil analysis, and wear in a component, to name but a few. Operating environment indicators in this model are failure accelerators and/or decelerators that are included in the covariate function of EHM and may increase or decrease the value of the hazard from the baseline hazard. These indicators caused by the environment in which an asset operates, and that have not been explicitly identified by the condition indicators (e.g. Loads, environmental stresses, and other dynamically changing environment factors). While the effects of operating environment indicators could be nought in EHM; condition indicators could emerge because these indicators are observed and measured as long as an asset is operational and survived. EHM has several advantages over the existing covariate-based hazard models. One is this model utilises three different sources of asset health data (i.e. population characteristics, condition indicators, and operating environment indicators) to effectively predict hazard and reliability. Another is that EHM explicitly investigates the relationship between condition and operating environment indicators associated with the hazard of an asset. Furthermore, the proportionality assumption, which most of the covariate-based hazard models suffer from it, does not exist in EHM. According to the sample size of failure/suspension times, EHM is extended into two forms: semi-parametric and non-parametric. The semi-parametric EHM assumes a specified lifetime distribution (i.e. Weibull distribution) in the form of the baseline hazard. However, for more industry applications, due to sparse failure event data of assets, the analysis of such data often involves complex distributional shapes about which little is known. Therefore, to avoid the restrictive assumption of the semi-parametric EHM about assuming a specified lifetime distribution for failure event histories, the non-parametric EHM, which is a distribution free model, has been developed. The development of EHM into two forms is another merit of the model. A case study was conducted using laboratory experiment data to validate the practicality of the both semi-parametric and non-parametric EHMs. The performance of the newly-developed models is appraised using the comparison amongst the estimated results of these models and the other existing covariate-based hazard models. The comparison results demonstrated that both the semi-parametric and non-parametric EHMs outperform the existing covariate-based hazard models. Future research directions regarding to the new parameter estimation method in the case of time-dependent effects of covariates and missing data, application of EHM in both repairable and non-repairable systems using field data, and a decision support model in which linked to the estimated reliability results, are also identified.