102 resultados para modification
Resumo:
Research on analogies in science education has focussed on student interpretation of teacher and textbook analogies, psychological aspects of learning with analogies and structured approaches for teaching with analogies. Few studies have investigated how analogies might be pivotal in students’ growing participation in chemical discourse. To study analogies in this way requires a sociocultural perspective on learning that focuses on ways in which language, signs, symbols and practices mediate participation in chemical discourse. This study reports research findings from a teacher-research study of two analogy-writing activities in a chemistry class. The study began with a theoretical model, Third Space, which informed analyses and interpretation of data. Third Space was operationalized into two sub-constructs called Dialogical Interactions and Hybrid Discourses. The aims of this study were to investigate sociocultural aspects of learning chemistry with analogies in order to identify classroom activities where students generate Dialogical Interactions and Hybrid Discourses, and to refine the operationalization of Third Space. These aims were addressed through three research questions. The research questions were studied through an instrumental case study design. The study was conducted in my Year 11 chemistry class at City State High School for the duration of one Semester. Data were generated through a range of data collection methods and analysed through discourse analysis using the Dialogical Interactions and Hybrid Discourse sub-constructs as coding categories. Results indicated that student interactions differed between analogical activities and mathematical problem-solving activities. Specifically, students drew on discourses other than school chemical discourse to construct analogies and their growing participation in chemical discourse was tracked using the Third Space model as an interpretive lens. Results of this study led to modification of the theoretical model adopted at the beginning of the study to a new model called Merged Discourse. Merged Discourse represents the mutual relationship that formed during analogical activities between the Analog Discourse and the Target Discourse. This model can be used for interpreting and analysing classroom discourse centred on analogical activities from sociocultural perspectives. That is, it can be used to code classroom discourse to reveal students’ growing participation with chemical (or scientific) discourse consistent with sociocultural perspectives on learning.
Resumo:
Current multimedia Web search engines still use keywords as the primary means to search. Due to the richness in multimedia contents, general users constantly experience some difficulties in formulating textual queries that are representative enough for their needs. As a result, query reformulation becomes part of an inevitable process in most multimedia searches. Previous Web query formulation studies did not investigate the modification sequences and thus can only report limited findings on the reformulation behavior. In this study, we propose an automatic approach to examine multimedia query reformulation using large-scale transaction logs. The key findings show that search term replacement is the most dominant type of modifications in visual searches but less important in audio searches. Image search users prefer the specified search strategy more than video and audio users. There is also a clear tendency to replace terms with synonyms or associated terms in visual queries. The analysis of the search strategies in different types of multimedia searching provides some insights into user’s searching behavior, which can contribute to the design of future query formulation assistance for keyword-based Web multimedia retrieval systems.
Resumo:
Functional communication training was used to replace multiply determined problem behaviour in two boys with autism. Experiment 1 involved a functional analysis of several topographies of problem behaviour using a variation of the procedures described by Iwata, Dorsey, Slifer, Bauman, and Richman. Results suggested that aggression, self-injury, and disruption were multiply determined (i.e., maintained by both attention and access to preferred objects). Experiment 2 involved a multiple-baseline design across subjects. The focus of intervention was to replace aggression, self-injury, and disruption with functionally equivalent communicative alternatives. Both boys were taught alternative “mands” to recruit attention and request preferred objects. Acquisition of these alternative communication skills was associated with concurrent decreases in aggression, self-injury, and disruption. Results suggest that multiply determined challenging behaviour can be decreased by teaching an alternative communication skill to replace each assessed function of the problem behaviour.
Resumo:
The buckling strength of a new cold-formed hollow flange channel section known as LiteSteel beam (LSB) is governed by lateral distortional buckling characterised by simultaneous lateral deflection, twist and web distortion for its intermediate spans. Recent research has developed a modified elastic lateral buckling moment equation to allow for lateral distortional buckling effects. However, it is limited to a uniform moment distribution condition that rarely exists in practice. Transverse loading introduces a non-uniform bending moment distribution, which is also often applied above or below the shear centre (load height). These loading conditions are known to have significant effects on the lateral buckling strength of beams. Many steel design codes have adopted equivalent uniform moment distribution and load height factors to allow for these effects. But they were derived mostly based on data for conventional hot-rolled, doubly symmetric I-beams subject to lateral torsional buckling. The moment distribution and load height effects of transverse loading for LSBs, and the suitability of the current design modification factors to accommodate these effects for LSBs is not known. This paper presents the details of a research study based on finite element analyses on the elastic lateral buckling strength of simply supported LSBs subject to transverse loading. It discusses the suitability of the current steel design code modification factors, and provides suitable recommendations for simply supported LSBs subject to transverse loading.
Resumo:
Over the past decade, plants have been used as expression hosts for the production of pharmaceutically important and commercially valuable proteins. Plants offer many advantages over other expression systems such as lower production costs, rapid scale up of production, similar post-translational modification as animals and the low likelihood of contamination with animal pathogens, microbial toxins or oncogenic sequences. However, improving recombinant protein yield remains one of the greatest challenges to molecular farming. In-Plant Activation (InPAct) is a newly developed technology that offers activatable and high-level expression of heterologous proteins in plants. InPAct vectors contain the geminivirus cis elements essential for rolling circle replication (RCR) and are arranged such that the gene of interest is only expressed in the presence of the cognate viral replication-associated protein (Rep). The expression of Rep in planta may be controlled by a tissue-specific, developmentally regulated or chemically inducible promoter such that heterologous protein accumulation can be spatially and temporally controlled. One of the challenges for the successful exploitation of InPAct technology is the control of Rep expression as even very low levels of this protein can reduce transformation efficiency, cause abnormal phenotypes and premature activation of the InPAct vector in regenerated plants. Tight regulation over transgene expression is also essential if expressing cytotoxic products. Unfortunately, many tissue-specific and inducible promoters are unsuitable for controlling expression of Rep due to low basal activity in the absence of inducer or in tissues other than the target tissue. This PhD aimed to control Rep activity through the production of single chain variable fragments (scFvs) specific to the motif III of Tobacco yellow dwarf virus (TbYDV) Rep. Due to the important role played by the conserved motif III in the RCR, it was postulated that such scFvs can be used to neutralise the activity of the low amount of Rep expressed from a “leaky” inducible promoter, thus preventing activation of the TbYDV-based InPAct vector until intentional induction. Such scFvs could also offer the potential to confer partial or complete resistance to TbYDV, and possibly heterologous viruses as motif III is conserved between geminiviruses. Studies were first undertaken to determine the levels of TbYDV Rep and TbYDV replication-associated protein A (RepA) required for optimal transgene expression from a TbYDV-based InPAct vector. Transient assays in a non-regenerable Nicotiana tabacum (NT-1) cell line were undertaken using a TbYDV-based InPAct vector containing the uidA reporter gene (encoding GUS) in combination with TbYDV Rep and RepA under the control of promoters with high (CaMV 35S) or low (Banana bunchy top virus DNA-R, BT1) activity. The replication enhancer protein of Tomato leaf curl begomovirus (ToLCV), REn, was also used in some co-bombardment experiments to examine whether RepA could be substituted by a replication enhancer from another geminivirus genus. GUS expression was observed both quantitatively and qualitatively by fluorometric and histochemical assays, respectively. GUS expression from the TbYDV-based InPAct vector was found to be greater when Rep was expected to be expressed at low levels (BT1 promoter) rather than high levels (35S promoter). GUS expression was further enhanced when Rep and RepA were co-bombarded with a low ratio of Rep to RepA. Substituting TbYDV RepA with ToLCV REn also enhanced GUS expression but more importantly highest GUS expression was observed when cells were co-transformed with expression vectors directing low levels of Rep and high levels of RepA irrespective of the level of REn. In this case, GUS expression was approximately 74-fold higher than that from a non-replicating vector. The use of different terminators, namely CaMV 35S and Nos terminators, in InPAct vectors was found to influence GUS expression. In the presence of Rep, GUS expression was greater using pInPActGUS-Nos rather than pInPActGUS-35S. The only instance of GUS expression being greater from vectors containing the 35S terminator was when comparing expression from cells transformed with Rep, RepA and REnexpressing vectors and either non-replicating vectors, p35SGS-Nos or p35SGS-35S. This difference was most likely caused by an interaction of viral replication proteins with each other and the terminators. These results indicated that (i) the level of replication associated proteins is critical to high transgene expression, (ii) the choice of terminator within the InPAct vector may affect expression levels and (iii) very low levels of Rep can activate InPAct vectors hence controlling its activity is critical. Prior to generating recombinant scFvs, a recombinant TbYDV Rep was produced in E. coli to act as a control to enable the screening for Rep-specific antibodies. A bacterial expression vector was constructed to express recombinant TbYDV Rep with an Nterminal His-tag (N-His-Rep). Despite investigating several purification techniques including Ni-NTA, anion exchange, hydrophobic interaction and size exclusion chromatography, N-His-Rep could only be partially purified using a Ni-NTA column under native conditions. Although it was not certain that this recombinant N-His-Rep had the same conformation as the native TbYDV Rep and was functional, results from an electromobility shift assay (EMSA) showed that N-His-Rep was able to interact with the TbYDV LIR and was, therefore, possibly functional. Two hybridoma cell lines from mice, immunised with a synthetic peptide containing the TbYDV Rep motif III amino acid sequence, were generated by GenScript (USA). Monoclonal antibodies secreted by the two hybridoma cell lines were first screened against denatured N-His-Rep in Western analysis. After demonstrating their ability to bind N-His-Rep, two scFvs (scFv1 and scFv2) were generated using a PCR-based approach. Whereas the variable heavy chain (VH) from both cell lines could be amplified, only the variable light chain (VL) from cell line 2 was amplified. As a result, scFv1 contained VH and VL from cell line 1, whereas scFv2 contained VH from cell line 2 and VL from cell line 1. Both scFvs were first expressed in E. coli in order to evaluate their affinity to the recombinant TbYDV N-His-Rep. The preliminary results demonstrated that both scFvs were able to bind to the denatured N-His-Rep. However, EMSAs revealed that only scFv2 was able to bind to native N-His-Rep and prevent it from interacting with the TbYDV LIR. Each scFv was cloned into plant expression vectors and co-bombarded into NT-1 cells with the TbYDV-based InPAct GUS expression vector and pBT1-Rep to examine whether the scFvs could prevent Rep from mediating RCR. Although it was expected that the addition of the scFvs would result in decreased GUS expression, GUS expression was found to slightly increase. This increase was even more pronounced when the scFvs were targeted to the cell nucleus by the inclusion of the Simian virus 40 large T antigen (SV40) nuclear localisation signal (NLS). It was postulated that the scFvs were binding to a proportion of Rep, leaving a small amount available to mediate RCR. The outcomes of this project provide evidence that very high levels of recombinant protein can theoretically be expressed using InPAct vectors with judicious selection and control of viral replication proteins. However, the question of whether the scFvs generated in this project have sufficient affinity for TbYDV Rep to prevent its activity in a stably transformed plant remains unknown. It may be that other scFvs with different combinations of VH and VL may have greater affinity for TbYDV Rep. Such scFvs, when expressed at high levels in planta, might also confer resistance to TbYDV and possibly heterologous geminiviruses.
Resumo:
Modern computer graphics systems are able to construct renderings of such high quality that viewers are deceived into regarding the images as coming from a photographic source. Large amounts of computing resources are expended in this rendering process, using complex mathematical models of lighting and shading. However, psychophysical experiments have revealed that viewers only regard certain informative regions within a presented image. Furthermore, it has been shown that these visually important regions contain low-level visual feature differences that attract the attention of the viewer. This thesis will present a new approach to image synthesis that exploits these experimental findings by modulating the spatial quality of image regions by their visual importance. Efficiency gains are therefore reaped, without sacrificing much of the perceived quality of the image. Two tasks must be undertaken to achieve this goal. Firstly, the design of an appropriate region-based model of visual importance, and secondly, the modification of progressive rendering techniques to effect an importance-based rendering approach. A rule-based fuzzy logic model is presented that computes, using spatial feature differences, the relative visual importance of regions in an image. This model improves upon previous work by incorporating threshold effects induced by global feature difference distributions and by using texture concentration measures. A modified approach to progressive ray-tracing is also presented. This new approach uses the visual importance model to guide the progressive refinement of an image. In addition, this concept of visual importance has been incorporated into supersampling, texture mapping and computer animation techniques. Experimental results are presented, illustrating the efficiency gains reaped from using this method of progressive rendering. This visual importance-based rendering approach is expected to have applications in the entertainment industry, where image fidelity may be sacrificed for efficiency purposes, as long as the overall visual impression of the scene is maintained. Different aspects of the approach should find many other applications in image compression, image retrieval, progressive data transmission and active robotic vision.
Resumo:
Porous mesopore-bioglass (MBG) scaffolds have been proposed as a new class of bone regeneration materials due to their apatite-formation and drug-delivery properties; however, the material’s inherent brittleness and high degradation and surface instability are major disadvantages, which compromise its mechanical strength and cytocompatibility as a biological scaffold. Silk, on the other hand, is a native biomaterial and is well characterized with respect to biocompatibility and tensile strength. In this study we set out to investigate what effects blending silk with MBG had on the physiochemical, drug-delivery and biological properties of MBG scaffolds with a view to bone tissue engineering applications. Transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were the methods used to analyze the inner microstructure, pore size and morphology, and composition of MBG scaffolds, before and after addition of silk. The effect of silk modification on the mechanical property of MBG scaffolds was determined by testing the compressive strength of the scaffolds and also compressive strength after degradation over time. The drug-delivery potential was evaluated by the release of dexamethasone (DEX) from the scaffolds. Finally, the cytocompatibility of silk-modified scaffolds was investigated by the attachment, morphology, proliferation, differentiation and bone-relative gene expression of bone marrow stromal cells (BMSCs). The results showed that silk modification improved the uniformity and continuity of pore network of MBG scaffolds, and maintained high porosity (94%) and large-pore size (200–400 mm). There was a significant improvement in mechanical strength, mechanical stability, and control of burst release of DEX in silkmodified MBG scaffolds. Silk modification also appeared to provide a better environment for BMSC attachment, spreading, proliferation, and osteogenic differentiation on MBG scaffolds.
Resumo:
The accuracy of cause-of-death statistics substantially depends on the quality of cause-of-death information in death certificates, primarily completed by medical doctors. Deficiencies in cause-of-death certification have been observed across the world, and over time. Despite educational interventions targeting to improve the quality of death certification, their intended impacts are rarely evaluated. This review aims to provide empirical evidence that could guide the modification of existing educational programs, or the development of new interventions, which are necessary to improve the capacity of certifiers as well as the quality of cause-of-death certification, and thereby, the quality of mortality statistics.
Resumo:
Cardiovascular diseases refer to the class of diseases that involve the heart or blood vessels (arteries and veins). Examples of medical devices for treating the cardiovascular diseases include ventricular assist devices (VADs), artificial heart valves and stents. Metallic biomaterials such as titanium and its alloy are commonly used for ventricular assist devices. However, titanium and its alloy show unacceptable thrombosis, which represents a major obstacle to be overcome. Polyurethane (PU) polymer has better blood compatibility and has been used widely in cardiovascular devices. Thus one aim of the project was to coat a PU polymer onto a titanium substrate by increasing the surface roughness, and surface functionality. Since the endothelium of a blood vessel has the most ideal non-thrombogenic properties, it was the target of this research project to grow an endothelial cell layer as a biological coating based on the tissue engineering strategy. However, seeding endothelial cells on the smooth PU coating surfaces is problematic due to the quick loss of seeded cells which do not adhere to the PU surface. Thus it was another aim of the project to create a porous PU top layer on the dense PU pre-layer-coated titanium substrate. The method of preparing the porous PU layer was based on the solvent casting/particulate leaching (SCPL) modified with centrifugation. Without the step of centrifugation, the distribution of the salt particles was not uniform within the polymer solution, and the degree of interconnection between the salt particles was not well controlled. Using the centrifugal treatment, the pore distribution became uniform and the pore interconnectivity was improved even at a high polymer solution concentration (20%) as the maximal salt weight was added in the polymer solution. The titanium surfaces were modified by alkli and heat treatment, followed by functionlisation using hydrogen peroxide. A silane coupling agent was coated before the application of the dense PU pre-layer and the porous PU top layer. The ability of the porous top layer to grow and retain the endothelial cells was also assessed through cell culture techniques. The bonding strengths of the PU coatings to the modified titanium substrates were measured and related to the surface morphologies. The outcome of the project is that it has laid a foundation to achieve the strategy of endothelialisation for the blood compatibility of medical devices. This thesis is divided into seven chapters. Chapter 2 describes the current state of the art in the field of surface modification in cardiovascular devices such as ventricular assist devices (VADs). It also analyses the pros and cons of the existing coatings, particularly in the context of this research. The surface coatings for VADs have evolved from early organic/ inorganic (passive) coatings, to bioactive coatings (e.g. biomolecules), and to cell-based coatings. Based on the commercial applications and the potential of the coatings, the relevant review is focused on the following six types of coatings: (1) titanium nitride (TiN) coatings, (2) diamond-like carbon (DLC) coatings, (3) 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer coatings, (4) heparin coatings, (5) textured surfaces, and (6) endothelial cell lining. Chapter 3 reviews the polymer scaffolds and one relevant fabrication method. In tissue engineering, the function of a polymeric material is to provide a 3-dimensional architecture (scaffold) which is typically used to accommodate transplanted cells and to guide their growth and the regeneration of tissue. The success of these systems is dependent on the design of the tissue engineering scaffolds. Chapter 4 describes chemical surface treatments for titanium and titanium alloys to increase the bond strength to polymer by altering the substrate surface, for example, by increasing surface roughness or changing surface chemistry. The nature of the surface treatment prior to bonding is found to be a major factor controlling the bonding strength. By increasing surface roughness, an increase in surface area occurs, which allows the adhesive to flow in and around the irregularities on the surface to form a mechanical bond. Changing surface chemistry also results in the formation of a chemical bond. Chapter 5 shows that bond strengths between titanium and polyurethane could be significantly improved by surface treating the titanium prior to bonding. Alkaline heat treatment and H2O2 treatment were applied to change the surface roughness and the surface chemistry of titanium. Surface treatment increases the bond strength by altering the substrate surface in a number of ways, including increasing the surface roughness and changing the surface chemistry. Chapter 6 deals with the characterization of the polyurethane scaffolds, which were fabricated using an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous scaffolds for cardiac tissue engineering. The enhanced method involves the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and interconnectivity of the scaffolds. It is shown that the enhanced SCPL method and a collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffolds.In Chapter 7, the enhanced SCPL method is used to form porous features on the polyurethane-coated titanium substrate. The cavities anchored the endothelial cells to remain on the blood contacting surfaces. It is shown that the surface porosities created by the enhanced SCPL may be useful in forming a stable endothelial layer upon the blood contacting surface. Chapter 8 finally summarises the entire work performed on the fabrication and analysis of the polymer-Ti bonding, the enhanced SCPL method and the PU microporous surface on the metallic substrate. It then outlines the possibilities for future work and research in this area.
Resumo:
There is a need in industry for a commodity polyethylene film with controllable degradation properties that will degrade in an environmentally neutral way, for applications such as shopping bags and packaging film. Additives such as starch have been shown to accelerate the degradation of plastic films, however control of degradation is required so that the film will retain its mechanical properties during storage and use, and then degrade when no longer required. By the addition of a photocatalyst it is hoped that polymer film will breakdown with exposure to sunlight. Furthermore, it is desired that the polymer film will degrade in the dark, after a short initial exposure to sunlight. Research has been undertaken into the photo- and thermo-oxidative degradation processes of 25 ìm thick LLDPE (linear low density polyethylene) film containing titania from different manufacturers. Films were aged in a suntest or in an oven at 50 °C, and the oxidation product formation was followed using IR spectroscopy. Degussa P25, Kronos 1002, and various organic-modified and doped titanias of the types Satchleben Hombitan and Hunstsman Tioxide incorporated into LLDPE films were assessed for photoactivity. Degussa P25 was found to be the most photoactive with UVA and UVC exposure. Surface modification of titania was found to reduce photoactivity. Crystal phase is thought to be among the most important factors when assessing the photoactivity of titania as a photocatalyst for degradation. Pre-irradiation with UVA or UVC for 24 hours of the film containing 3% Degussa P25 titania prior to aging in an oven resulted in embrittlement in ca. 200 days. The multivariate data analysis technique PCA (principal component analysis) was used as an exploratory tool to investigate the IR spectral data. Oxidation products formed in similar relative concentrations across all samples, confirming that titania was catalysing the oxidation of the LLDPE film without changing the oxidation pathway. PCA was also employed to compare rates of degradation in different films. PCA enabled the discovery of water vapour trapped inside cavities formed by oxidation by titania particles. Imaging ATR/FTIR spectroscopy with high lateral resolution was used in a novel experiment to examine the heterogeneous nature of oxidation of a model polymer compound caused by the presence of titania particles. A model polymer containing Degussa P25 titania was solvent cast onto the internal reflection element of the imaging ATR/FTIR and the oxidation under UVC was examined over time. Sensitisation of 5 ìm domains by titania resulted in areas of relatively high oxidation product concentration. The suitability of transmission IR with a synchrotron light source to the study of polymer film oxidation was assessed as the Australian Synchrotron in Melbourne, Australia. Challenges such as interference fringes and poor signal-to-noise ratio need to be addressed before this can become a routine technique.
Resumo:
Accessibility to housing for low to moderate income groups in Australia has been experiencing a severe decline since 2001. On the supply side, the public sector has been reducing its commitment to the direct provision of public housing. Despite high demand for affordable housing, there has been limited supply generated by non-government housing providers. One possible solution to promote an increase in affordable housing supply, like other infrastructure, is through the development of multi-stakeholder partnerships and private financing. This research aims to identify current issues underlying decision-making criteria for building multi-stakeholder partnerships to deliver affordable housing projects. It also investigates strategies for minimising risk and ensuring the financial outcomes of these partnership arrangements. A mix of qualitative in-depth interviews and quantitative surveys has been used as the main method to explore stakeholder experiences regarding their involvement in partnership arrangements in the affordable housing sector in Queensland. Two sets of interviews were conducted following an exploratory pilot study: one set in 2003-2004 and the other in 2007-2008. There were nineteen respondents representing government, private and not-for-profit organisations in the first stage interviews and surveys. The second stage interviews were focussed on twenty-two housing providers in South East Queensland. Initial analyses have been conducted using thematic and statistical analyses. This study extends the use of existing decision making tools and combines the use of a Soft System Framework to analyse the ideal state questionnaires using qualitative thematic analysis. Soft System Methodology (SSM) has been used to analyse this unstructured complex problem by using systematic thinking to develop a conceptual model and carrying it to the real world situations to solve the problem. This research found that the diversity of stakeholder capability and their level of risk acceptance will allow partnerships to develop the best synergies and a degree of collaboration which achieves the required financial return within acceptable risk parameters. However, some of the negativity attached to future commitment to such partnerships has been found to be the anticipation of a worse outcome than that expected from independent action. Many interviewees agree that housing providers' fear of financial risk and community rejection has been central to dampening their enthusiasm for entering such investment projects. The creation of a mixed-use development structure will mitigate both risk and return as the commercial income will subsidise the affordable housing development and will normalise concentration of marginalised low-income people who live in a prime location with an award winning design. In addition, tenant support schemes and rent-to-buy incentive programs will encourage them to secure their tenancies and significantly reduce the risk of rent arrears and property damage. There is also a breakthrough investment vehicle offered by the social developer which sells the non-physical but financial product to individual and institutional investors to mitigate further financial risk. Finally, this study recommends modification of the current value-for-money framework in favour of broader partnership arrangements which are more closely aligned with risk minimisation strategies.
Resumo:
Economic reforms have transformed China into a modern economy - this requires greater emphasis on regulating markets and governing corporations to ensure economic growth continues. Yet, legal reforms are not as straightforward as transplanting Western models; more modification to suit Chinese political land cultural considerations needs to be incorporated. Likewise privatisation of the telecommuications sector does not mean that government influence in the new corporations cease. This is not necessarily negative as long as safeguards are in place. Plainly further reforms to the law and governance will be needed. Given that Confucian philosophy continues to play a central role in Chinese society and values, developing laws and governance practices from Confucian principles will arguably be appropriate for modern China.
Resumo:
The Queensland Court of Appeal recently heard a case that raised the defence of volenti on fit injuria. By a majority of 2:1 the court held in Leyden v Caboolture Shire Council [2007] QCA 134 (20 April 2007) that the defence of volenti was established and defeated the action in negligence for damages for personal injury. The facts of the case were quite simple. The plaintiff was 15 years old when he was injured at the Bluebell Park which was controlled and managed by the Caboolture Shire Council (the defendant). The park had a BMX track – built and maintained by the defendant. At trial it was held that although the defendant owed a duty of care to entrants, a duty was not owed to the plaintiff. The judge found that the plaintiff was different to other entrants who used facilities provided by a council in a public park. The plaintiff was not relying upon the defendant to provide a BMX track with jumps that were reasonably safe as the evidence was that the track was regularly altered by third parties and the plaintiff knew that. Therefore it was reasoned that the plaintiff was relying upon the ability of the third parties who modified the jump and his own ability to use it, not the ability of the defendant to provide a reasonably safe track (at [10]). The trial judge also held that if a duty was owed, the defence of volenti applied so as to defeat the claim for damages. This was based upon the evidence that the plaintiff knew of the modification of the jump by third parties and knew of the risk. It was held that the plaintiff ‘had the appropriate subjective appreciation of the risk’ (at [11]).