111 resultados para high-order peaks
Resumo:
The official need for content teachers to teach the language features of their fields has never been greater in Australia than now. In 2012, the recently formed national curriculum board announced that all teachers are responsible for the English language development of students whose first language or dialect is not Standard Australian English (SAE). This formal endorsement is an important juncture regarding the way expertise might be developed, perceived and exchanged between content and language teachers through collaboration, in order for the goals of English language learners in content areas to be realised. To that end, we conducted an action research project to explore and extend the reading strategies pedagogy of one English language teacher who teaches English language learners in a parallel junior high school Geography program. Such pedagogy will be valuable for all teachers as they seek to contribute to English language development goals as outlined in national curricula.
Resumo:
Evaluation of the Get REAL programme in an inclusive primary school setting has indicated its effectiveness in promoting pro-social behaviour for children with high functioning Autism. However, two children with co-morbid diagnoses and complex personal circumstances showed less consistent improvements. In order to explain their unique trajectories, not readily derived from quantitative studies, an exploratory case study approach was used to examine contextual influences on patterns of progress. Multiple data sources included coded video footage from the Get REAL programme, school reports on conduct, and parents and classroom teacher reports using the Strengths and Difficulties Questionnaire. While results provide support for the efficacy of the Get REAL programme for the two children, they also highlight the value of co-ordinated strategies and collaborative individualised approaches in more complex cases. This paper outlines the Get REAL intervention and a range of other school and support agency strategies impacting progress.
Resumo:
Return side streams from anaerobic digesters and dewatering facilities at wastewater treatment plants (WWTPs) contribute a significant proportion of the total nitrogen load on a mainstream process. Similarly, significant phosphate loads are also recirculated in biological nutrient removal (BNR) wastewater treatment plants. Ion exchange using a new material, known by the name MesoLite, shows strong potential for the removal of ammonia from these side streams and an opportunity to concurrently reduce phosphate levels. A pilot plant was designed and operated for several months on an ammonia rich centrate from a dewatering centrifuge at the Oxley Creek WWTP, Brisbane, Australia. The system operated with a detention time in the order of one hour and was operated for between 12 and 24 hours prior to regeneration with a sodium rich solution. The same pilot plant was used to demonstrate removal of phosphate from an abattoir wastewater stream at similar flow rates. Using MesoLite materials, >90% reduction of ammonia was achieved in the centrate side stream. A full-scale process would reduce the total nitrogen load at the Oxley Creek WWTP by at least 18%. This reduction in nitrogen load consequently improves the TKN/COD ratio of the influent and enhances the nitrogen removal performance of the biological nutrient removal process.
Resumo:
The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite–potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO3, KCO3 and KAlSiO4, which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300 °C, and the thermal decomposition products (H2O and CO2) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures.
Resumo:
Piezoelectric transducers convert electrical energy to mechanical energy and play a great role in ultrasound systems. Ultrasound power transducer performance is strongly related to the applied electrical excitation. To have a suitable excitation for maximum energy conversion, it is required to analyze the effects of input signal waveform, medium and input signal distortion on the characteristic of a high power ultrasound system (including ultrasound transducer). In this research, different input voltage signals are generated using a single-phase power inverter and a linear power amplifier to excite a high power ultrasound transducer in different medium (water and oil) in order to study the characteristic of the system. We have also considered and analyzed the effect of power converter output voltage distortions on the performance of the high power ultrasound transducer using a passive filter.
Resumo:
Most high-power ultrasound applications are driven by two-level inverters. However, the broad spectral content of the two-level pulse results in undesired harmonics that can decrease the performance of the system significantly. On the other hand, it is crucial to excite the piezoelectric devices at their main resonant frequency in order to have maximum energy conversion. Therefore a high-quality, low-distorted power signal is needed to excite the high-power piezoelectric transducer at its resonant frequency. This study proposes an efficient approach to develop the performance of high-power ultrasonic applications using multilevel inverters along with a frequency estimation algorithm. In this method, the resonant frequencies are estimated based on relative minimums of the piezoelectric impedance frequency response. The algorithm follows the resonant frequency variation and adapts the multilevel inverter reference frequency to drive an ultrasound transducer at high power. Extensive simulation and experimental results indicate the effectiveness of the proposed approach.
Resumo:
Data structures such as k-D trees and hierarchical k-means trees perform very well in approximate k nearest neighbour matching, but are only marginally more effective than linear search when performing exact matching in high-dimensional image descriptor data. This paper presents several improvements to linear search that allows it to outperform existing methods and recommends two approaches to exact matching. The first method reduces the number of operations by evaluating the distance measure in order of significance of the query dimensions and terminating when the partial distance exceeds the search threshold. This method does not require preprocessing and significantly outperforms existing methods. The second method improves query speed further by presorting the data using a data structure called d-D sort. The order information is used as a priority queue to reduce the time taken to find the exact match and to restrict the range of data searched. Construction of the d-D sort structure is very simple to implement, does not require any parameter tuning, and requires significantly less time than the best-performing tree structure, and data can be added to the structure relatively efficiently.
Resumo:
This paper presents an experimental study on the effect of presoaked lightweight aggregates (LWAs) for internal curing on water permeability, water absorption and resistance of concrete to chloride-ion penetration in comparison with those of a control concrete and a concrete with shrinkage reducing admixture (SRA) of similar water/cement ratios (w/c). In general, the concretes with LWA particles had initial water absorption, sorptivity and water permeability similar to or lower than those of the control concrete and the concrete with SRA. The charges passed, chloride migration coefficient and chloride diffusion coefficient of such concretes were in the same order as those of the control concrete and the concrete with SRA. However, the incorporation of the LWAs for internal curing reduced unit weight, compressive strength and elastic modulus of the concrete. Comparing the LWAs of different sizes for internal curing, finer particles were more efficient in reducing the shrinkage and generally resulted in less reduction in the unit weight, compressive strength, and elastic modulus. However, the increase in the more porous crushed LW particles in concrete seems to increase the penetration of chloride ions in the concrete. The concrete with SRA had initial water absorption, sorptivity, water permeability and resistance to chloride ion penetration comparable with those of the control concrete. The use of SRA in concrete does not affect the elastic modulus of the concrete, except for a minor influence on the compressive strength of the concrete.
Resumo:
Global Navigation Satellite Systems (GNSS)-based observation systems can provide high precision positioning and navigation solutions in real time, in the order of subcentimetre if we make use of carrier phase measurements in the differential mode and deal with all the bias and noise terms well. However, these carrier phase measurements are ambiguous due to unknown, integer numbers of cycles. One key challenge in the differential carrier phase mode is to fix the integer ambiguities correctly. On the other hand, in the safety of life or liability-critical applications, such as for vehicle safety positioning and aviation, not only is high accuracy required, but also the reliability requirement is important. This PhD research studies to achieve high reliability for ambiguity resolution (AR) in a multi-GNSS environment. GNSS ambiguity estimation and validation problems are the focus of the research effort. Particularly, we study the case of multiple constellations that include initial to full operations of foreseeable Galileo, GLONASS and Compass and QZSS navigation systems from next few years to the end of the decade. Since real observation data is only available from GPS and GLONASS systems, the simulation method named Virtual Galileo Constellation (VGC) is applied to generate observational data from another constellation in the data analysis. In addition, both full ambiguity resolution (FAR) and partial ambiguity resolution (PAR) algorithms are used in processing single and dual constellation data. Firstly, a brief overview of related work on AR methods and reliability theory is given. Next, a modified inverse integer Cholesky decorrelation method and its performance on AR are presented. Subsequently, a new measure of decorrelation performance called orthogonality defect is introduced and compared with other measures. Furthermore, a new AR scheme considering the ambiguity validation requirement in the control of the search space size is proposed to improve the search efficiency. With respect to the reliability of AR, we also discuss the computation of the ambiguity success rate (ASR) and confirm that the success rate computed with the integer bootstrapping method is quite a sharp approximation to the actual integer least-squares (ILS) method success rate. The advantages of multi-GNSS constellations are examined in terms of the PAR technique involving the predefined ASR. Finally, a novel satellite selection algorithm for reliable ambiguity resolution called SARA is developed. In summary, the study demonstrats that when the ASR is close to one, the reliability of AR can be guaranteed and the ambiguity validation is effective. The work then focuses on new strategies to improve the ASR, including a partial ambiguity resolution procedure with a predefined success rate and a novel satellite selection strategy with a high success rate. The proposed strategies bring significant benefits of multi-GNSS signals to real-time high precision and high reliability positioning services.
Resumo:
High performance liquid chromatography (HPLC) coupled with the solid phase extraction method was developed for determining cimifugin (a coumarin derivative; one of Saposhnikovia divaricatae's constituents) in rat plasma after oral administration of Saposhnikovia divaricatae extract (SDE), and the pharmacokinetics of cimifugin either in SDE or as a single compound was investigated. The HPLC analysis was performed on a commercially available column (4.6 mm x 200 mm, 5 pm) with the isocratic elution of solvent A (Methanol) and solvent B (Water) (A:B=60:40) and the detection wavelength was set at 250 nm. The calibration curve was linear over the range of 0.100-10.040 microg/mL. The limit of detection was 30 ng/mL. At the rat plasma concentrations of 0.402, 4.016, 10.040 microg/mL, the intra-day precision was 6.21%, 3.98%, and 2.23%; the inter-day precision was 7.59%, 4.26%, and 2.09%, respectively. The absolute recovery was 76.58%, 76.61%, and 77.67%, respectively. When the dosage of SDE was equal to the pure compound calculated by the amount of cimifugin, it was found to have two maximum peaks while the pure compound only showed one peak in the plasma concentration-time curve. The pharmacokinetic characteristics of SDE showed the superiority of the extract and the properties of traditional Chinese medicine.
Resumo:
The QUT Outdoor Worker Sun Protection (OWSP) project undertook a comprehensive applied health promotion project to demonstrate the effectiveness of sun protection measures which influence high risk outdoor workers in Queensland to adopt sun safe behaviours. The three year project (2010-2013) was driven by two key concepts: 1) The hierarchy of control, which is used to address risks in the workplace, advocates for six control measures that need to be considered in order of priority (refer to Section 3.4.2); and 2) the Ottawa Charter which recommends five action means to achieve health promotion (refer to Section 2.1). The project framework was underpinned by a participatory action research approach that valued peoples’ input, took advantage of existing skills and resources, and stimulated innovation (refer to Section 4.2). Fourteen workplaces (small and large) with a majority outdoor workforce were recruited across regional Queensland (Darling Downs, Northwest, Mackay and Cairns) from four industries types: 1) building and construction, 2) rural and farming, 3) local government, and 4) public sector. A workplace champion was identified at each workplace and was supported (through resource provision, regular contact and site visits) over a 14 to 18 month intervention period to make sun safety a priority in their workplace. Employees and employers were independently assessed for pre- and postintervention sun protection behaviours. As part of the intervention, an individualised sun safety action plan was developed in conjunction with each workplace to guide changes across six key strategy areas including: 1) Policy (e.g., adopt sun safety practices during all company events); 2) Structural and environmental (e.g., shade on worksites; eliminate or minimise reflective surfaces); 3) Personal protective equipment (PPE) (e.g., trial different types of sunscreens, or wide-brimmed hats); 4) Education and awareness (e.g., include sun safety in inductions and toolbox talks; send reminder emails or text messages to workers);5) Role modelling (e.g., by managers, supervisors, workplace champions and mentors); and 6) Skin examinations (e.g., allow time off work for skin checks). The participatory action process revealed that there was no “one size fits all” approach to sun safety in the workplace; a comprehensive, tailored approach was fundamental. This included providing workplaces with information, resources, skills, know how, incentives and practical help. For example, workplaces engaged in farming complete differing seasonal tasks across the year and needed to prepare for optimal sun safety of their workers during less labour intensive times. In some construction workplaces, long pants were considered a trip hazard and could not be used as part of a PPE strategy. Culture change was difficult to achieve and workplace champions needed guidance on the steps to facilitate this (e.g., influencing leaders through peer support, mentoring and role modelling). With the assistance of the project team the majority of workplaces were able to successfully implement the sun safety strategies contained within their action plans, up skilling them in the evidence for sun safety, how to overcome barriers, how to negotiate with all relevant parties and assess success. The most important enablers to the implementation of a successful action plan were a pro-active workplace champion, strong employee engagement, supportive management, the use of highly visual educational resources, and external support (provided by the project team through regular contact either directly through phone calls or indirectly through emails and e-newsletters). Identified barriers included a lack of time, the multiple roles of workplace champions, (especially among smaller workplaces), competing issues leading to a lack of priority for sun safety, the culture of outdoor workers, and costs or budgeting constraints. The level of sun safety awareness, knowledge, and sun protective behaviours reported by the workers increased between pre-and post-intervention. Of the nine sun protective behaviours that were assessed, the largest changes reported included a 26% increase in workers who “usually or always” wore a broad-brimmed hat, a 20% increase in the use of natural shade, a 19% increase in workers wearing long-sleeved collared shirts, and a 16% increase in workers wearing long trousers.
Resumo:
Liuwei Dihuang Wan (LWD), a classic Chinese medicinal formulae, has been used to improve or restore declined functions related to aging and geriatric diseases, such as impaired mobility, vision, hearing, cognition and memory. It has attracted increasingly much attention as one of the most popular and valuable herbal medicines. However, the systematic analysis of the chemical constituents of LDW is difficult and thus has not been well established. In this paper, a rapid, sensitive and reliable ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight high-definition mass spectrometry (UPLC-ESI-Q-TOF-MS) method with automated MetaboLynx analysis in positive and negative ion mode was established to characterize the chemical constituents of LDW. The analysis was performed on a Waters UPLCTM HSS T3 using a gradient elution system. MS/MS fragmentation behavior was proposed for aiding the structural identification of the components. Under the optimized conditions, a total of 50 peaks were tentatively characterized by comparing the retention time and MS data. It is concluded that a rapid and robust platform based on UPLC-ESI-Q-TOF-MS has been successfully developed for globally identifying multiple-constituents of traditional Chinese medicine prescriptions. This is the first report on systematic analysis of the chemical constituents of LDW. This article is protected by copyright. All rights reserved.
Resumo:
Children with Autism Spectrum Disorder experience difficulty in communication and in understanding the social world which can have negative consequences for their relationships, in managing emotions, and generally dealing with the challenges of everyday life. This thesis examines the effectiveness of the Active and Reflective components of the Get REAL program through the assessment of the detailed coding of video-recorded observations and longitudinal quantitative analysis. The aim of Get REAL is to increase the social, emotional, and cognitive learning of children with High Functioning Autism (HFA). Get REAL is a group program designed specifically for use in inclusive primary school settings. The Get REAL program was designed in response to the mixed success of generalisation of learning to new contexts of existing social skills programs. The theoretical foundation of Get REAL is based upon pedagogical theory and learning theory to facilitate transfer of learning, combined with experiential, individualised, evaluative and organisational approaches. This thesis is by publication and consists of four refereed journal papers; 1 accepted for publication and 3 that are under review. Paper 1 describes the development and theoretical basis of the Get REAL program and provides detail of the program structure and learning cycle. The focus of Paper 1 reflects the first question of interest in the thesis which is about the extent to which learning derived from participation in the program can be generalised to other contexts. Participants are 16 children with HFA ranging in age from 8-13 years. Results provided support for the generalisability of learning from Get REAL to home and school evidenced by parent and teacher data collected pre and post participation in Get REAL. Following establishment of the generalisation of learning from Get REAL, Papers 2 and 3 focus on the Active and Reflective components of the program in order to examine how individual and group learning takes place. Participants (N = 12) in the program are video-taped during the Active and Reflective Sessions. Using identical coding protocols of video data, improvements in prosocial behaviour and diminishing of inappropriate behaviours were apparent with the exception of perspective taking. Data also revealed that 2 of the participants had atypical trajectories. An in-depth case study analysis was then conducted with these 2 participants in Paper 4. Data included reports from health care and education professionals within the school and externally (e.g., paediatrician) and identified the multi-faceted nature of care needed for children with comorbid diagnoses and extremely challenging family circumstances as a complex task to effect change. Results of this research support the effectiveness of the Get REAL program in promoting pro social behaviours such as improvements in engaging with others and emotional regulation, and in diminishing unwanted behaviours such as conduct problems. Further, the gains made by the participating children were found to be generalisable beyond Get REAL to home and other school settings. The research contained in the thesis adds to current knowledge about how learning can take place for children with HFA. Results show that an experiential learning framework with a focus on social cognition, together with explicit teaching, scaffolded with video feedback, are key ingredients for the generalisation of social learning to broader contexts.
Resumo:
Non-periodic structural variation has been found in the high Tc cuprates, YBa2Cu3O7-x and Hg0.67Pb0.33Ba2Ca2Cu 3O8+δ, by image analysis of high resolution transmission electron microscope (HRTEM) images. We use two methods for analysis of the HRTEM images. The first method is a means for measuring the bending of lattice fringes at twin planes. The second method is a low-pass filter technique which enhances information contained by diffuse-scattered electrons and reveals what appears to be an interference effect between domains of differing lattice parameter in the top and bottom of the thin foil. We believe that these methods of image analysis could be usefully applied to the many thousands of HRTEM images that have been collected by other workers in the high temperature superconductor field. This work provides direct structural evidence for phase separation in high Tc cuprates, and gives support to recent stripes models that have been proposed to explain various angle resolved photoelectron spectroscopy and nuclear magnetic resonance data. We believe that the structural variation is a response to an opening of an electronic solubility gap where holes are not uniformly distributed in the material but are confined to metallic stripes. Optimum doping may occur as a consequence of the diffuse boundaries between stripes which arise from spinodal decomposition. Theoretical ideas about the high Tc cuprates which treat the cuprates as homogeneous may need to be modified in order to take account of this type of structural variation.
Resumo:
Individual variability in the acquisition, consolidation and extinction of conditioned fear potentially contributes to the development of fear pathology including posttraumatic stress disorder (PTSD). Pavlovian fear conditioning is a key tool for the study of fundamental aspects of fear learning. Here, we used a selected mouse line of High and Low Pavlovian conditioned fear created from an advanced intercrossed line (AIL) in order to begin to identify the cellular basis of phenotypic divergence in Pavlovian fear conditioning. We investigated whether phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for the acquisition and consolidation of Pavlovian fear memory, is differentially expressed following Pavlovian fear learning in the High and Low fear lines. We found that following Pavlovian auditory fear conditioning, High and Low line mice differ in the number of pMAPK-expressing neurons in the dorsal sub nucleus of the lateral amygdala (LAd). In contrast, this difference was not detected in the ventral medial (LAvm) or ventral lateral (LAvl) amygdala sub nuclei or in control animals. We propose that this apparent increase in plasticity at a known locus of fear memory acquisition and consolidation relates to intrinsic differences between the two fear phenotypes. These data provide important insights into the micronetwork mechanisms encoding phenotypic differences in fear. Understanding the circuit level cellular and molecular mechanisms that underlie individual variability in fear learning is critical for the development of effective treatment of fear-related illnesses such as PTSD.