433 resultados para genetic background
Resumo:
The recently proposed data-driven background dataset refinement technique provides a means of selecting an informative background for support vector machine (SVM)-based speaker verification systems. This paper investigates the characteristics of the impostor examples in such highly-informative background datasets. Data-driven dataset refinement individually evaluates the suitability of candidate impostor examples for the SVM background prior to selecting the highest-ranking examples as a refined background dataset. Further, the characteristics of the refined dataset were analysed to investigate the desired traits of an informative SVM background. The most informative examples of the refined dataset were found to consist of large amounts of active speech and distinctive language characteristics. The data-driven refinement technique was shown to filter the set of candidate impostor examples to produce a more disperse representation of the impostor population in the SVM kernel space, thereby reducing the number of redundant and less-informative examples in the background dataset. Furthermore, data-driven refinement was shown to provide performance gains when applied to the difficult task of refining a small candidate dataset that was mis-matched to the evaluation conditions.
Resumo:
This paper describes experiments conducted in order to simultaneously tune 15 joints of a humanoid robot. Two Genetic Algorithm (GA) based tuning methods were developed and compared against a hand-tuned solution. The system was tuned in order to minimise tracking error while at the same time achieve smooth joint motion. Joint smoothness is crucial for the accurate calculation of online ZMP estimation, a prerequisite for a closedloop dynamically stable humanoid walking gait. Results in both simulation and on a real robot are presented, demonstrating the superior smoothness performance of the GA based methods.
Resumo:
This chapter describes physical and environmental determinants of the health of Australians, providing a background to the development of successful public health activity. Health determinants are the biomedical, genetic, behavioural, socio-economic and environmental factors that impact on health and wellbeing. These determinants can be influenced by interventions and by resources and systems (AIHW 2006). Many factors combine to affect the health of individuals and communities. People’s circumstances and the environment determine whether the population is healthy or not. Factors such as where people live, the state of their environment, genetics, their education level and income, and their relationships with friends and family, all are likely to impact on their health. The determinants of population health reflect the context of people’s lives; however, people are very unlikely to be able to control many of these determinants (WHO 2007). This chapter and Chapter 6 illustrate how various determinants can relate to, and influence other determinants, as well as health and wellbeing. We believe it is particularly important to provide an understanding of determinants and their relationship to health and illness in order to provide a structure in which a broader conceptualisation of health can be placed. Determinants of health do not exist in isolation from one another. More frequently they work together in a complex system. What is clear to anyone who works in public health is that many factors impact on the health and wellbeing of people. For example, in the next chapter we discuss factors such as living and working conditions, social support, ethnicity and class, income, housing, work stress and the impact of education on the length and quality of people’s lives. In 1974, the influential ‘Lalonde Report’ (Lalonde 1974) described key factors that impact on health status. These factors included lifestyle, environment, human biology and health services. Taking a population health approach builds on the Lalonde Report, and recognises that a range of factors, such as living and working conditions and the distribution of wealth in society, interact to determine the health status of a population. Tackling health determinants has great potential to reduce the burden of disease and promote the health of the general population. In summary, we understand very clearly now that health is determined by the complex interactions between individual characteristics, social and economic factors and physical environments; the entire range of factors that impact on health must be addressed if we are to make significant gains in population health, and focussing interventions on the health of the population or significant sub-populations can achieve important health gains. In 2007, the Australian Government included in the list of National Health Priority Areas the following health issues: cancer control, injury prevention and control, cardiovascular health, diabetes mellitus, mental health, asthma, and arthritis and musculoskeletal conditions. The National Health Priority Areas set the agenda for the Commonwealth, States and Territories, Local Governments and not-for-profit organisations to place attention on those areas considered to be the major foci for action. Many of these health issues are discussed in this chapter and the following chapter.
Resumo:
Campylobacter jejuni followed by Campylobacter coli contribute substantially to the economic and public health burden attributed to food-borne infections in Australia. Genotypic characterisation of isolates has provided new insights into the epidemiology and pathogenesis of C. jejuni and C. coli. However, currently available methods are not conducive to large scale epidemiological investigations that are necessary to elucidate the global epidemiology of these common food-borne pathogens. This research aims to develop high resolution C. jejuni and C. coli genotyping schemes that are convenient for high throughput applications. Real-time PCR and High Resolution Melt (HRM) analysis are fundamental to the genotyping schemes developed in this study and enable rapid, cost effective, interrogation of a range of different polymorphic sites within the Campylobacter genome. While the sources and routes of transmission of campylobacters are unclear, handling and consumption of poultry meat is frequently associated with human campylobacteriosis in Australia. Therefore, chicken derived C. jejuni and C. coli isolates were used to develop and verify the methods described in this study. The first aim of this study describes the application of MLST-SNP (Multi Locus Sequence Typing Single Nucleotide Polymorphisms) + binary typing to 87 chicken C. jejuni isolates using real-time PCR analysis. These typing schemes were developed previously by our research group using isolates from campylobacteriosis patients. This present study showed that SNP + binary typing alone or in combination are effective at detecting epidemiological linkage between chicken derived Campylobacter isolates and enable data comparisons with other MLST based investigations. SNP + binary types obtained from chicken isolates in this study were compared with a previously SNP + binary and MLST typed set of human isolates. Common genotypes between the two collections of isolates were identified and ST-524 represented a clone that could be worth monitoring in the chicken meat industry. In contrast, ST-48, mainly associated with bovine hosts, was abundant in the human isolates. This genotype was, however, absent in the chicken isolates, indicating the role of non-poultry sources in causing human Campylobacter infections. This demonstrates the potential application of SNP + binary typing for epidemiological investigations and source tracing. While MLST SNPs and binary genes comprise the more stable backbone of the Campylobacter genome and are indicative of long term epidemiological linkage of the isolates, the development of a High Resolution Melt (HRM) based curve analysis method to interrogate the hypervariable Campylobacter flagellin encoding gene (flaA) is described in Aim 2 of this study. The flaA gene product appears to be an important pathogenicity determinant of campylobacters and is therefore a popular target for genotyping, especially for short term epidemiological studies such as outbreak investigations. HRM curve analysis based flaA interrogation is a single-step closed-tube method that provides portable data that can be easily shared and accessed. Critical to the development of flaA HRM was the use of flaA specific primers that did not amplify the flaB gene. HRM curve analysis flaA interrogation was successful at discriminating the 47 sequence variants identified within the 87 C. jejuni and 15 C. coli isolates and correlated to the epidemiological background of the isolates. In the combinatorial format, the resolving power of flaA was additive to that of SNP + binary typing and CRISPR (Clustered regularly spaced short Palindromic repeats) HRM and fits the PHRANA (Progressive hierarchical resolving assays using nucleic acids) approach for genotyping. The use of statistical methods to analyse the HRM data enhanced sophistication of the method. Therefore, flaA HRM is a rapid and cost effective alternative to gel- or sequence-based flaA typing schemes. Aim 3 of this study describes the development of a novel bioinformatics driven method to interrogate Campylobacter MLST gene fragments using HRM, and is called ‘SNP Nucleated Minim MLST’ or ‘Minim typing’. The method involves HRM interrogation of MLST fragments that encompass highly informative “Nucleating SNPS” to ensure high resolution. Selection of fragments potentially suited to HRM analysis was conducted in silico using i) “Minimum SNPs” and ii) the new ’HRMtype’ software packages. Species specific sets of six “Nucleating SNPs” and six HRM fragments were identified for both C. jejuni and C. coli to ensure high typeability and resolution relevant to the MLST database. ‘Minim typing’ was tested empirically by typing 15 C. jejuni and five C. coli isolates. The association of clonal complexes (CC) to each isolate by ‘Minim typing’ and SNP + binary typing were used to compare the two MLST interrogation schemes. The CCs linked with each C. jejuni isolate were consistent for both methods. Thus, ‘Minim typing’ is an efficient and cost effective method to interrogate MLST genes. However, it is not expected to be independent, or meet the resolution of, sequence based MLST gene interrogation. ‘Minim typing’ in combination with flaA HRM is envisaged to comprise a highly resolving combinatorial typing scheme developed around the HRM platform and is amenable to automation and multiplexing. The genotyping techniques described in this thesis involve the combinatorial interrogation of differentially evolving genetic markers on the unified real-time PCR and HRM platform. They provide high resolution and are simple, cost effective and ideally suited to rapid and high throughput genotyping for these common food-borne pathogens.
Resumo:
Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.
Resumo:
Cloud computing is a latest new computing paradigm where applications, data and IT services are provided over the Internet. Cloud computing has become a main medium for Software as a Service (SaaS) providers to host their SaaS as it can provide the scalability a SaaS requires. The challenges in the composite SaaS placement process rely on several factors including the large size of the Cloud network, SaaS competing resource requirements, SaaS interactions between its components and SaaS interactions with its data components. However, existing applications’ placement methods in data centres are not concerned with the placement of the component’s data. In addition, a Cloud network is much larger than data center networks that have been discussed in existing studies. This paper proposes a penalty-based genetic algorithm (GA) to the composite SaaS placement problem in the Cloud. We believe this is the first attempt to the SaaS placement with its data in Cloud provider’s servers. Experimental results demonstrate the feasibility and the scalability of the GA.
Resumo:
Web service composition is an important problem in web service based systems. It is about how to build a new value-added web service using existing web services. A web service may have many implementations, all of which have the same functionality, but may have different QoS values. Thus, a significant research problem in web service composition is how to select a web service implementation for each of the web services such that the composite web service gives the best overall performance. This is so-called optimal web service selection problem. There may be mutual constraints between some web service implementations. Sometimes when an implementation is selected for one web service, a particular implementation for another web service must be selected. This is so called dependency constraint. Sometimes when an implementation for one web service is selected, a set of implementations for another web service must be excluded in the web service composition. This is so called conflict constraint. Thus, the optimal web service selection is a typical constrained ombinatorial optimization problem from the computational point of view. This paper proposes a new hybrid genetic algorithm for the optimal web service selection problem. The hybrid genetic algorithm has been implemented and evaluated. The evaluation results have shown that the hybrid genetic algorithm outperforms other two existing genetic algorithms when the number of web services and the number of constraints are large.
Resumo:
Composite web services comprise several component web services. When a composite web service is executed centrally, a single web service engine is responsible for coordinating the execution of the components, which may create a bottleneck and degrade the overall throughput of the composite service when there are a large number of service requests. Potentially this problem can be handled by decentralizing execution of the composite web service, but this raises the issue of how to partition a composite service into groups of component services such that each group can be orchestrated by its own execution engine while ensuring acceptable overall throughput of the composite service. Here we present a novel penalty-based genetic algorithm to solve the composite web service partitioning problem. Empirical results show that our new algorithm outperforms existing heuristic-based solutions.
Resumo:
In cloud computing resource allocation and scheduling of multiple composite web services is an important challenge. This is especially so in a hybrid cloud where there may be some free resources available from private clouds but some fee-paying resources from public clouds. Meeting this challenge involves two classical computational problems. One is assigning resources to each of the tasks in the composite web service. The other is scheduling the allocated resources when each resource may be used by more than one task and may be needed at different points of time. In addition, we must consider Quality-of-Service issues, such as execution time and running costs. Existing approaches to resource allocation and scheduling in public clouds and grid computing are not applicable to this new problem. This paper presents a random-key genetic algorithm that solves new resource allocation and scheduling problem. Experimental results demonstrate the effectiveness and scalability of the algorithm.