144 resultados para functional resonance accident model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Young novice drivers are significantly more likely to be killed or injured in car crashes than older, experienced drivers. Graduated driver licensing (GDL), which allows the novice to gain driving experience under less-risky circumstances, has resulted in reduced crash incidence; however, the driver's psychological traits are ignored. This paper explores the relationships between gender, age, anxiety, depression, sensitivity to reward and punishment, sensation-seeking propensity, and risky driving. Participants were 761 young drivers aged 17–24 (M= 19.00, SD= 1.56) with a Provisional (intermediate) driver's licence who completed an online survey comprising socio-demographic questions, the Impulsive Sensation Seeking Scale, Kessler's Psychological Distress Scale, the Sensitivity to Punishment and Sensitivity to Reward Questionnaire, and the Behaviour of Young Novice Drivers Scale. Path analysis revealed depression, reward sensitivity, and sensation-seeking propensity predicted the self-reported risky behaviour of the young novice drivers. Gender was a moderator; and the anxiety level of female drivers also influenced their risky driving. Interventions do not directly consider the role of rewards and sensation seeking, or the young person's mental health. An approach that does take these variables into account may contribute to improved road safety outcomes for both young and older road users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infrastructure organizations are operating in an increasingly challenging business environment as a result of globalization, privatization and deregulation. In an external business environment that is constantly changing, extant literature on strategic management advocates the need to focus on factors internal to the organization such as resources and capabilities to sustain their performance. Specifically, they need to develop dynamic capabilities in order to survive and prosper under conditions of change. The aim of this paper is to explore the dynamic capabilities needed in the management of transport infrastructure assets using a multiple case study research strategy. This paper produced a number of findings. First, the empirical evidence showed that the core infrastructure asset management processes are capacity management, options evaluation, procurement & delivery, maintenance management, and asset information management. Second, the study identified five dynamic capabilities namely stakeholder connectivity, cross-functional, relational, technology absorptive and integrated information capability as central to executing the strategic infrastructure asset management processes well. These findings culminate in the development of a capability model to improve the performance of infrastructure assets in an increasingly dynamic business environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective The current study evaluated part of the Multifactorial Model of Driving Safety to elucidate the relative importance of cognitive function and a limited range of standard measures of visual function in relation to the Capacity to Drive Safely. Capacity to Drive Safely was operationalized using three validated screening measures for older drivers. These included an adaptation of the well validated Useful Field of View (UFOV) and two newer measures, namely a Hazard Perception Test (HPT), and a Hazard Change Detection Task (HCDT). Method Community dwelling drivers (n = 297) aged 65–96 were assessed using a battery of measures of cognitive and visual function. Results Factor analysis of these predictor variables yielded factors including Executive/Speed, Vision (measured by visual acuity and contrast sensitivity), Spatial, Visual Closure, and Working Memory. Cognitive and Vision factors explained 83–95% of age-related variance in the Capacity to Drive Safely. Spatial and Working Memory were associated with UFOV, HPT and HCDT, Executive/Speed was associated with UFOV and HCDT and Vision was associated with HPT. Conclusion The Capacity to Drive Safely declines with chronological age, and this decline is associated with age-related declines in several higher order cognitive abilities involving manipulation and storage of visuospatial information under speeded conditions. There are also age-independent effects of cognitive function and vision that determine driving safety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The current model of care for breast cancer is focused on disease treatment followed by ongoing recurrence surveillance. This approach lacks attention to the patients’ physical and functional well-being. Breast cancer treatment sequelae can lead to physical impairments and functional limitations. Common impairments include pain, fatigue, upper extremity dysfunction, lymphedema, weakness, joint arthralgia, neuropathy, weight gain, cardiovascular effects, and osteoporosis. Evidence supports prospective surveillance for early identification and treatment as a means to prevent or mitigate many of these concerns. Purpose: This paper proposes a prospective surveillance model for physical rehabilitation and exercise that can be integrated with disease treatment to create a more comprehensive approach to survivorship health care. The goals of the model are to promote surveillance for common physical impairments and functional limitations associated with breast cancer treatment, to provide education to facilitate early identification of impairments, to introduce rehabilitation and exercise intervention when physical impairments are identified and to promote and support physical activity and exercise behaviors through the trajectory of disease treatment and survivorship. Methods: The model is the result of a multi-disciplinary meeting of research and clinical experts in breast cancer survivorship and representatives of relevant professional and advocacy organizations. Outcomes: The proposed model identifies time points during breast cancer care for assessment of and education about physical impairments. Ultimately, implementation of the model may influence incidence and severity of breast cancer treatment related physical impairments. As such, the model seeks to optimize function during and following treatment and positively influence a growing survivorship community.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims Multi-method study including two parts: Study One: three sets of observations in two regional areas of Queensland Study Two: two sets of parent intercept interviews conducted in Toowoomba, Queensland. The aim of Study Two is to determine parents’ views, opinions and knowledge of child restraint practices and the Queensland legislative amendment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Trauma resulting from traffic crashes poses a significant problem in highly motorised countries. Over a million people worldwide are killed annually and 50 million are critically injured as a result of traffic collisions. In Australia, road crashes cost an average of $17 billion annually in personal loss of income and quality of life, organisational losses in productivity and workplace quality, and health care costs. Driver aggression has been identified as a key factor contributing to crashes, and many motorists report experiencing mild forms of aggression (e.g., rude gestures, horn honking). However despite this concern, driver aggression has received relatively little attention in empirical research, and existing research has been hampered by a number of methodological and conceptual shortcomings. Specifically, there has been substantial disagreement regarding what constitutes aggressive driving and a failure to examine both the situational factors and the emotional and cognitive processes underlying driver aggression. To enhance current understanding of aggressive driving, a model of driver aggression that highlights the cognitive and emotional processes at play in aggressive driving incidents is proposed. Aims: The research aims to improve current understanding of the complex nature of driver aggression by testing and refining a model of aggressive driving that incorporates the person-related and situational factors and the cognitive and emotional appraisal processes fundamental to driver aggression. In doing so, the research will assist to provide a clear definition of what constitutes aggressive driving, assist to identify on-road incidents that trigger driver aggression, and identify the emotional and cognitive appraisal processes that underlie driver aggression. Methods: The research involves three studies. Firstly, to contextualise the model and explore the cognitive and emotional aspects of driver aggression, a diary-based study using self-reports of aggressive driving events will be conducted with a general population of drivers. This data will be supplemented by in-depth follow-up interviews with a sub-sample of participants. Secondly, to test generalisability of the model, a large sample of drivers will be asked to respond to video-based scenarios depicting driving contexts derived from incidents identified in Study 1 as inciting aggression. Finally, to further operationalise and test the model an advanced driving simulator will be used with sample of drivers. These drivers will be exposed to various driving scenarios that would be expected to trigger negative emotional responses. Results: Work on the project has commenced and progress on the first study will be reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prevention and safety promotion programmes. Traditionally, in-depth investigations of crash risks are conducted using exposure controlled study or case-control methodology. However, these studies need either observational data for control cases or exogenous exposure data like vehicle-kilometres travel, entry flow or product of conflicting flow for a particular traffic location, or a traffic site. These data are not readily available and often require extensive data collection effort on a system-wide basis. Aim: The objective of this research is to propose an alternative methodology to investigate crash risks of a road user group in different circumstances using readily available traffic police crash data. Methods: This study employs a combination of a log-linear model and the quasi-induced exposure technique to estimate crash risks of a road user group. While the log-linear model reveals the significant interactions and thus the prevalence of crashes of a road user group under various sets of traffic, environmental and roadway factors, the quasi-induced exposure technique estimates relative exposure of that road user in the same set of explanatory variables. Therefore, the combination of these two techniques provides relative measures of crash risks under various influences of roadway, environmental and traffic conditions. The proposed methodology has been illustrated using Brisbane motorcycle crash data of five years. Results: Interpretations of results on different combination of interactive factors show that the poor conspicuity of motorcycles is a predominant cause of motorcycle crashes. Inability of other drivers to correctly judge the speed and distance of an oncoming motorcyclist is also evident in right-of-way violation motorcycle crashes at intersections. Discussion and Conclusions: The combination of a log-linear model and the induced exposure technique is a promising methodology and can be applied to better estimate crash risks of other road users. This study also highlights the importance of considering interaction effects to better understand hazardous situations. A further study on the comparison between the proposed methodology and case-control method would be useful.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Young novice drivers constitute a major public health concern due to the number of crashes in which they are involved, and the resultant injuries and fatalities. Previous research suggests psychological traits (reward sensitivity, sensation seeking propensity), and psychological states (anxiety, depression) influence their risky behaviour. The relationships between gender, anxiety, depression, reward sensitivity, sensation seeking propensity and risky driving are explored. Participants (390 intermediate drivers, 17-25 years) completed two online surveys at a six month interval. Surveys comprised sociodemographics, Brief Sensation Seeking Scale, Kessler’s Psychological Distress Scale, an abridged Sensitivity to Reward Questionnaire, and risky driving behaviour was measured by the Behaviour of Young Novice Drivers Scale. Structural equation modelling revealed anxiety, reward sensitivity and sensation seeking propensity predicted risky driving. Gender was a moderator, with only reward sensitivity predicting risky driving for males. Future interventions which consider the role of rewards, sensation seeking, and mental health may contribute to improved road safety for younger and older road users alike.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and significance: Older adults with chronic diseases are at increasing risk of hospital admission and readmission. Approximately 75% of adults have at least one chronic condition, and the odds of developing a chronic condition increases with age. Chronic diseases consume about 70% of the total Australian health expenditure, and about 59% of hospital events for chronic conditions are potentially preventable. These figures have brought to light the importance of the management of chronic disease among the growing older population. Many studies have endeavoured to develop effective chronic disease management programs by applying social cognitive theory. However, limited studies have focused on chronic disease self-management in older adults at high risk of hospital readmission. Moreover, although the majority of studies have covered wide and valuable outcome measures, there is scant evidence on examining the fundamental health outcomes such as nutritional status, functional status and health-related quality of life. Aim: The aim of this research was to test social cognitive theory in relation to self-efficacy in managing chronic disease and three health outcomes, namely nutritional status, functional status, and health-related quality of life, in older adults at high risk of hospital readmission. Methods: A cross-sectional study design was employed for this research. Three studies were undertaken. Study One examined the nutritional status and validation of a nutritional screening tool; Study Two explored the relationships between participants. characteristics, self-efficacy beliefs, and health outcomes based on the study.s hypothesized model; Study Three tested a theoretical model based on social cognitive theory, which examines potential mechanisms of the mediation effects of social support and self-efficacy beliefs. One hundred and fifty-seven patients aged 65 years and older with a medical admission and at least one risk factor for readmission were recruited. Data were collected from medical records on demographics, medical history, and from self-report questionnaires. The nutrition data were collected by two registered nurses. For Study One, a contingency table and the kappa statistic was used to determine the validity of the Malnutrition Screening Tool. In Study Two, standard multiple regression, hierarchical multiple regression and logistic regression were undertaken to determine the significant influential predictors for the three health outcome measures. For Study Three, a structural equation modelling approach was taken to test the hypothesized self-efficacy model. Results: The findings of Study One suggested that a high prevalence of malnutrition continues to be a concern in older adults as the prevalence of malnutrition was 20.6% according to the Subjective Global Assessment. Additionally, the findings confirmed that the Malnutrition Screening Tool is a valid nutritional screening tool for hospitalized older adults at risk of readmission when compared to the Subjective Global Assessment with high sensitivity (94%), and specificity (89%) and substantial agreement between these two methods (k = .74, p < .001; 95% CI .62-.86). Analysis data for Study Two found that depressive symptoms and perceived social support were the two strongest influential factors for self-efficacy in managing chronic disease in a hierarchical multiple regression. Results of multivariable regression models suggested advancing age, depressive symptoms and less tangible support were three important predictors for malnutrition. In terms of functional status, a standard regression model found that social support was the strongest predictor for the Instrumental Activities of Daily Living, followed by self-efficacy in managing chronic disease. The results of standard multiple regression revealed that the number of hospital readmission risk factors adversely affected the physical component score, while depressive symptoms and self-efficacy beliefs were two significant predictors for the mental component score. In Study Three, the results of the structural equation modelling found that self-efficacy partially mediated the effect of health characteristics and depression on health-related quality of life. The health characteristics had strong direct effects on functional status and body mass index. The results also indicated that social support partially mediated the relationship between health characteristics and functional status. With regard to the joint effects of social support and self-efficacy, social support fully mediated the effect of health characteristics on self-efficacy, and self-efficacy partially mediated the effect of social support on functional status and health-related quality of life. The results also demonstrated that the models fitted the data well with relative high variance explained by the models, implying the hypothesized constructs under discussion were highly relevant, and hence the application for social cognitive theory in this context was supported. Conclusion: This thesis highlights the applicability of social cognitive theory on chronic disease self-management in older adults at risk of hospital readmission. Further studies are recommended to validate and continue to extend the development of social cognitive theory on chronic disease self-management in older adults to improve their nutritional and functional status, and health-related quality of life.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poisson distribution has often been used for count like accident data. Negative Binomial (NB) distribution has been adopted in the count data to take care of the over-dispersion problem. However, Poisson and NB distributions are incapable of taking into account some unobserved heterogeneities due to spatial and temporal effects of accident data. To overcome this problem, Random Effect models have been developed. Again another challenge with existing traffic accident prediction models is the distribution of excess zero accident observations in some accident data. Although Zero-Inflated Poisson (ZIP) model is capable of handling the dual-state system in accident data with excess zero observations, it does not accommodate the within-location correlation and between-location correlation heterogeneities which are the basic motivations for the need of the Random Effect models. This paper proposes an effective way of fitting ZIP model with location specific random effects and for model calibration and assessment the Bayesian analysis is recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-state insurgent actors are too weak to compel powerful adversaries to their will, so they use violence to coerce. A principal objective is to grow and sustain violent resistance to the point that it either militarily challenges the state, or more commonly, generates unacceptable political costs. To survive, insurgents must shift popular support away from the state and to grow they must secure it. State actor policies and actions perceived as illegitimate and oppressive by the insurgent constituency can generate these shifts. A promising insurgent strategy is to attack states in ways that lead angry publics and leaders to discount the historically established risks and take flawed but popular decisions to use repressive measures. Such decisions may be enabled by a visceral belief in the power of coercion and selective use of examples of where robust measures have indeed suppressed resistance. To avoid such counterproductive behaviours the cases of apparent 'successful repression' must be understood. This thesis tests whether robust state action is correlated with reduced support for insurgents, analyses the causal mechanisms of such shifts and examines whether such reduction is because of compulsion or coercion? The approach is founded on prior research by the RAND Corporation which analysed the 30 insurgencies most recently resolved worldwide to determine factors of counterinsurgent success. This new study first re-analyses their data at a finer resolution with new queries that investigate the relationship between repression and insurgent active support. Having determined that, in general, repression does not correlate with decreased insurgent support, this study then analyses two cases in which the data suggests repression seems likely to be reducing insurgent support: the PKK in Turkey and the insurgency against the Vietnamese-sponsored regime after their ousting of the Khmer Rouge. It applies 'structured-focused' case analysis with questions partly built from the insurgency model of Leites and Wolf, who are associated with the advocacy of US robust means in Vietnam. This is thus a test of 'most difficult' cases using a 'least likely' test model. Nevertheless, the findings refute the deterrence argument of 'iron fist' advocates. Robust approaches may physically prevent effective support of insurgents but they do not coercively deter people from being willing to actively support the insurgency.