62 resultados para fission track


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a combined experimental, numerical, and theoretical study on the mechanical behaviors of track-shaped concrete-filled steel tubular (SCFRT) stub columns stiffened by rebars under compressive load. A total of 18 track-shaped concrete-filled steel tubular specimens including 12 specimens stiffened by rebars and 6 non-stiffened counterparts are tested, with consideration of parameters including flakiness ratio, concrete strength, and stiffeners. Failure pattern, bearing capacity, and ductility are all analyzed and discussed based on the experimental results. The numerical simulation by finite element (FE) software ABAQUS is also conducted. Based on both experimental and numerical results, theoretical formula to predict the load-bearing capacity of SCFRT stub columns subjected to axial compression loading is established according to the superposition principle of ultimate load-bearing capacity with rational simplification. The proposed theoretical method provides accurate predictions on the load bearing capacity by comparing with experimental results from 18 groups of specimens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free charge generation in donor-acceptor (D-A) based organic photovoltaic diodes (OPV) progresses through formation of charge-transfer (CT) and charge-separated (CS) states and excitation decay to the triplet level is considered as a terminal loss. On the other hand a direct excitation decay to the triplet state is beneficial for multiexciton harvesting in singlet fission photovoltaics (SF-PV) and the formation of CT-state is considered as a limiting factor for multiple triplet harvesting. These two extremes when present in a D-A system are expected to provide important insights into the mechanism of free charge generation and spin-character of bimolecular recombination in OPVs. Herein, we present the complete cycle of events linked to spin conversion in the model OPV system of rubrene/C60. By tracking the spectral evolution of photocurrent generation at short-circuit and close to open-circuit conditions we are able to capture spectral changes to photocurrent that reveal the triplet character of CT-state. Furthermore, we unveil an energy up-conversion effect that sets in as a consequence of triplet population build-up where triplet-triplet annihilation (TTA) process effectively regenerates the singlet excitation. This detailed balance is shown to enable a rare event of photon emission just above the open-circuit voltage (VOC) in OPVs.