481 resultados para energy 18 signaling
Resumo:
Sex hormone-binding globulin (SHBG) is a homodimeric plasma glycoprotein that is the major sex steroid carrier-protein in the bloodstream and functions also as a key regulator of steroid bioavailability within target tissues, such as the prostate. Additionally, SHBG binds to prostatic cell membranes via the putative and unidentified SHBG receptor (RSHBG), activating a signal transduction pathway implicated in stimulating both proliferation and expression of prostate specific antigen (PSA) in prostate cell lines in vitro. A yeast-two hybrid assay suggested an interaction between SHBG and kallikrein-related protease (KLK) 4, which is a serine protease implicated in the progression of prostate cancer. The potential interaction between these two proteins was investigated in this PhD thesis to determine whether SHBG is a proteolytic substrate of KLK4 and other members of the KLK family including KLK3/PSA, KLK7 and KLK14. Furthermore, the effects from SHBG proteolytic degradation on SHBG-regulated steroid bioavailability and the activation of the putative RSHBG signal transduction pathway were examined in the LNCaP prostate cancer cell line. SHBG was found to be a proteolytic substrate of the trypsin-like KLK4 and KLK14 in vitro, yielding several proteolysis fragments. Both chymotrypsin-like PSA and KLK7 displayed insignificant proteolytic activity against SHBG. The kinetic parameters of SHBG proteolysis by KLK4 and KLK14 demonstrate a strong enzyme-substrate binding capacity, possessing a Km of 1.2 ± 0.7 µM and 2.1 ± 0.6 µM respectively. The catalytic efficiencies (kcat/Km) of KLK4 and KLK14 proteolysis of SHBG were 1.6 x 104 M-1s-1 and 3.8 x 104 M-1s-1 respectively, which were comparable to parameters previously reported for peptide substrates. N-terminal sequencing of the fragments revealed cleavage near the junction of the N- and C-terminal laminin globulin-like (G-like) domains of SHBG, resulting in the division of the two globulins and ultimately the full degradation of these fragments by KLK4 and KLK14 over time. Proteolytic fragments that may retain steroid binding were rapidly degraded by both proteases, while fragments containing residues beyond the steroid binding pocket were less degraded over the same period of time. Degradation of SHBG was inhibited by the divalent metal cations calcium and zinc for KLK4, and calcium, zinc and magnesium for KLK14. The human secreted serine protease inhibitors (serpins), α1-antitrypsin and α2-antiplasmin, inhibited KLK4 and KLK14 proteolysis of SHBG; α1-antichymotrypsin inhibited KLK4 but not KLK14 activity. The inhibition by these serpins was comparable and in some cases more effective than general trypsin protease inhibitors such as aprotinin and phenylmethanesulfonyl fluoride (PMSF). The binding of 5α-dihydrotestosterone (DHT) to SHBG modulated interactions with KLK4 and KLK14. Steroid-free SHBG was more readily digested by both enzymes than DHT-bound SHBG. Moreover, a binding interaction exists between SHBG and pro-KLK4 and pro-KLK14, with DHT strengthening the binding to pro-KLK4 only. The inhibition of androgen uptake by cultured prostate cancer cells, mediated by SHBG steroid-binding, was examined to assess whether SHBG proteolysis by KLK4 and KLK14 modulated this process. Proteolytic digestion eliminated the ability of SHBG to inhibit the uptake of DHT from conditioned media into LNCaP cells. Therefore, the proteolysis of SHBG by KLK4 and KLK14 increased steroid bioavailability in vitro, leading to an increased uptake of androgens by prostate cancer cells. Interestingly, different transcriptional responses of PSA and KLK2, which are androgen-regulated genes, to DHT-bounsd SHBG treatment were observed between low and high passage number LNCaP cells (lpLNCaP and hpLNCaP respectively). HpLNCaP cells treated with DHT-bound SHBG demonstrated a significant synergistic upregulation of PSA and KLK2 above DHT or SHBG treatment alone, which is similar to previously reported downstream responses from RSHBG-mediated signaling activation. As this result was not seen in lpLNCaP cells, only hpLNCaP cells were further investigated to examine the modulation of potential RSHBG activity by KLK4 and KLK14 proteolysis of SHBG. Contrary to reported results, no increase in intracellular cAMP was observed in hpLNCaP cells when treated with SHBG in the presence and absence of either DHT or estradiol. As a result, the modulation of RSHBG-mediated signaling activation could not be determined. Finally, the identification of the RSHBG from both breast (MCF-7) and prostate cancer (LNCaP) cell lines was attempted. Fluorescently labeled peptides corresponding to the putative receptor binding domain (RBD) of SHBG were shown to be internalized by MCF-7 cells. Crosslinking of the RBD peptide to the cell surfaces of both MCF-7 and LNCaP cells, demonstrated the interaction of the peptide with several targets. These targets were then captured using RBD peptides synthesized onto a hydrophilic scaffold and analysed by mass spectrometry. The samples captured by the RBD peptide returned statistically significantly matches for cytokeratin 8, 18 and 19 as well as microtubule-actin crosslinking factor 1, which may indicate a novel interaction between SHBG and these proteins, but ultimately failed to detect a membrane receptor potentially responsible for the putative RSHBG-mediated signaling. This PhD project has reported the proteolytic processing of SHBG by two members of the kallikrein family, KLK4 and KLK14. The effect of SHBG proteolysis by KLK4 and KLK14 on RSHBG-mediated signaling activation was unable to be determined as the reported signal transduction pathway was not activated after treatment with SHBG, in combination with either DHT or estradiol. However, the digestion of SHBG by these two proteases positively regulated androgen bioavailability to prostate cancer cells in vitro. The increased uptake of androgens is deleterious in prostate cancer due to the promotion of proliferation, metastasis, invasion and the inhibition of apoptosis. The increased bioavailability of androgens, from SHBG proteolysis by KLK4 and KLK14, may therefore promote both carcinogenesis and progression of prostate cancer. Finally, this information may contribute to the development of therapeutic treatment strategies for prostate cancer by inhibiting the proteolysis of SHBG, by KLK4 and KLK14, to prevent the increased uptake of androgens by hormone-dependent cancerous tissues.
Resumo:
This paper presents an Active Gate Signaling scheme to reduce voltage/current spikes across insulated gate power switches in hard switching power electronic circuits. Voltage and/or current spikes may cause EMI noise. In addition, they increase voltage/current stress on the switch. Traditionally, a higher gate resistance is chosen to reduce voltage/current spikes. Since the switching loss will increase remarkably, an active gate voltage control scheme is developed to improve efficiency of hard switching circuits while the undesirable voltage and/or current spikes are minimized.
Resumo:
Objective: In the majority of exercise intervention studies, the aggregate reported weight loss is often small. The efficacy of exercise as a weight loss tool remains in question. The aim of the present study was to investigate the variability in appetite and body weight when participants engaged in a supervised and monitored exercise programme. ---------- Design: Fifty-eight obese men and women (BMI = 31·8 ± 4·5 kg/m2) were prescribed exercise to expend approximately 2092 kJ (500 kcal) per session, five times a week at an intensity of 70 % maximum heart rate for 12 weeks under supervised conditions in the research unit. Body weight and composition, total daily energy intake and various health markers were measured at weeks 0, 4, 8 and 12. ---------- Results: Mean reduction in body weight (3·2 ± 1·98 kg) was significant (P < 0·001); however, there was large individual variability (−14·7 to +2·7 kg). This large variability could be largely attributed to the differences in energy intake over the 12-week intervention. Those participants who failed to lose meaningful weight increased their food intake and reduced intake of fruits and vegetables. ---------- Conclusion: These data have demonstrated that even when exercise energy expenditure is high, a healthy diet is still required for weight loss to occur in many people.
Resumo:
Protein-energy wasting (PEW) is commonly seen in patients with chronic kidney disease (CKD). The condition is characterised by chronic, systemic low-grade inflammation which affects nutritional status by a variety of mechanisms including reducing appetite and food intake and increasing muscle catabolism. PEW is linked with co-morbidities such as cardiovascular disease, and is associated with lower quality of life, increased hospitalisations and a 6-fold increase in risk of death1. Significant gender differences have been found in the severity and effects of several markers of PEW. There have been limited studies testing the ability of anti-inflammatory agents or nutritional interventions to reduce the effects of PEW in dialysis patients. This thesis makes a significant contribution to the understanding of PEW in dialysis patients. It advances understanding of measurement techniques for two of the key components, appetite and inflammation, and explores the effect of fish oil, an anti-inflammatory agent, on markers of PEW in dialysis patients. The first part of the thesis consists of two methodological studies conducted using baseline data. The first study aims to validate retrospective ratings of hunger, desire to eat and fullness on visual analog scales (VAS) (paper and pen and electronic) as a new method of measuring appetite in dialysis patients. The second methodological study aims to assess the ability of a variety of methods available in routine practice to detect the presence of inflammation. The second part of the thesis aims to explore the effect of 12 weeks supplementation with 2g per day of Eicosapentaenoic Acid (EPA), a longchain fatty acid found in fish oil, on markers of PEW. A combination of biomarkers and psychomarkers of appetite and inflammation are the main outcomes being explored, with nutritional status, dietary intake and quality of life included as secondary outcomes. A lead in phase of 3 months prior to baseline was used so that each person acts as their own historical control. The study also examines whether there are gender differences in response to the treatment. Being an exploratory study, an important part of the work is to test the feasibility of the intervention, thus the level of adherence and factors associated with adherence are also presented. The studies were conducted at the hemodialysis unit of the Wesley Hospital. Participants met the following criteria: adult, stage 5 CKD on hemodialysis for at least 3 months, not expected to receive a transplant or switch to another dialysis modality during the study, absence of intellectual impairment or mental illness impairing ability to follow instructions or complete the intervention. A range of intermediate, clinical and patient-centred outcome measures were collected at baseline and 12 weeks. Inflammation was measured using five biomarkers: c-reactive protein (CRP), interleukin-6 (IL6), intercellular adhesion molecule (sICAM-1), vascular cell adhesion molecule (sVCAM-1) and white cell count (WCC). Subjective appetite was measured using the first question from the Appetite and Dietary Assessment (ADAT) tool and VAS for measurements of hunger, desire to eat and fullness. A novel feature of the study was the assessment of the appetite peptides leptin, ghrelin and peptide YY as biomarkers of appetite. Nutritional status/inflammation was assessed using the Malnutrition-Inflammation Score (MIS) and the Patient-Generated Subjective Global Assessment (PG-SGA). Dietary intake was measured using 3-day records. Quality of life was measured using the Kidney Disease Quality of Life Short Form version 1.3 (KDQOL-SF™ v1.3 © RAND University), which combines the Short-Form 36 (SF36) with a kidney-disease specific module2. A smaller range of these variables was available for analysis during the control phase (CRP, ADAT, dietary intake and nutritional status). Statistical analysis was carried out using SPSS version 14 (SPSS Inc, Chicago IL, USA). Analysis of the first part of the thesis involved descriptive and bivariate statistics, as well as Bland-Altman plots to assess agreement between methods, and sensitivity analysis/ROC curves to test the ability of methods to predict the presence of inflammation. The unadjusted (paired ttests) and adjusted (linear mixed model) change over time is presented for the main outcome variables of inflammation and appetite. Results are shown for the whole group followed by analyses according to gender and adherence to treatment. Due to the exploratory nature of the study, trends and clinical significance were considered as important as statistical significance. Twenty-eight patients (mean age 61±17y, 50% male, dialysis vintage 19.5 (4- 101) months) underwent baseline assessment. Seven out of 28 patients (25%) reported sub-optimal appetite (self-reported as fair, poor or very poor) despite all being well nourished (100% SGA A). Using the VAS, ratings of hunger, but not desire to eat or fullness, were significantly (p<0.05) associated with a range of relevant clinical variables including age (r=-0.376), comorbidities (r=-0.380) nutritional status (PG-SGA score, r=-0.451), inflammatory markers (CRP r=-0.383; sICAM-1 r=-0.387) and seven domains of quality of life. Patients expressed a preference for the paper and pen method of administering VAS. None of the tools (appetite, MIS, PG-SGA, albumin or iron) showed an acceptable ability to detect patients who are inflamed. It is recommended that CRP should be tested more frequently as a matter of course rather than seeking alternative methods of measuring inflammation. 27 patients completed the 12 week intervention. 20 patients were considered adherent based on changes in % plasma EPA, which rose from 1.3 (0.94)% to 5.2 (1.1)%, p<0.001, in this group. The major barriers to adherence were forgetting to take the tablets as well as their size. At 12 weeks, inflammatory markers remained steady apart from the white cell count which decreased (7.6(2.5) vs 7.0(2.2) x109/L, p=0.058) and sVCAM-1 which increased (1685(654) vs 2249(925) ng/mL, p=0.001). Subjective appetite using VAS increased (51mm to 57mm, +12%) and there was a trend towards reduction in peptide YY (660(31) vs 600(30) pg/mL, p=0.078). There were some gender differences apparent, with the following adjusted change between baseline and week 12: CRP (males -3% vs females +17%, p=0.19), IL6 (males +17% vs females +48%, p=0.77), sICAM-1 (males -5% vs females +11%, p=0.07), sVCAM-1 (males +54% vs females +19%, p=0.08) and hunger ratings (males 20% vs females -5%, p=0.18). On balance, males experienced a maintainence or reduction in three inflammatory markers and an improvement in hunger ratings, and therefore appeared to have responded better to the intervention. Compared to those who didn’t adhere, adherent patients maintained weight (mean(SE) change: +0.5(1.6) vs - 0.8(1.2) kg, p=0.052) and fat-free mass (-0.1 (1.6) vs -1.8 (1.8) kg, p=0.045). There was no difference in change between the intervention and control phase for CRP, appetite, nutritional status or dietary intake. The thesis makes a significant contribution to the evidence base for understanding of PEW in dialysis patients. It has advanced knowledge of methods of assessing inflammation and appetite. Retrospective ratings of hunger on a VAS appear to be a valid method of assessing appetite although samples which include patients with very poor appetite are required to confirm this. Supplementation with fish oil appeared to improve subjective appetite and dampen the inflammatory response. The effectiveness of the intervention is influenced by gender and adherence. Males appear to be more responsive to the primary outcome variables than females, and the quality of response is improved with better adherence. These results provide evidence to support future interventions aimed at reducing the effects of PEW in dialysis patients.
Resumo:
In photovoltaic, fuel cells and storage batteries, the low output DC voltage should be boosted. Therefore, a step-up converter is necessary to boost the low DC voltage for the DC link voltage of the inverter. The main contribution of this chapter is to electrical energy conversion in renewable energy systems based on multilevel inverters. Different configuration of renewable energy systems based on power converters will be discussed in detail. Finally, a new single inductor Multi-Output Boost (MOB) converter is proposed, which is compatible with the diode-clamped configuration. Steady state and dynamic analyses have been carried out in order to show the validity of the proposed topology. Then the joint circuit of the proposed DC-DC converter with a three-level diode-clamped converter is presented in order to have a series regulated voltage at the DC link voltage of the diode-clamped inverter. MOB converter can boost the low input DC voltage of the renewable energy sources and at the same time adjust the voltage across each capacitor to the desired voltage levels, thereby solving the main problem associated with capacitor voltage imbalance in this type of multilevel converter.
Resumo:
The growth and differentiation of mesenchymal stem cells is controlled by various growth factors, the activities of which can be modulated by heparan sulfates. We have previously underscored the necessity of sulfated glycosaminoglycans for the FGF-2-stimulated differentiation of osteoprogenitor cells. Here we show that exogenous application of heparan sulfate to cultures of primary rat MSCs stimulates their proliferation leading to increased expression of osteogenic markers and enhanced bone nodule formation. FGF-2 can also increase the proliferation and osteogenic differentiation of rMSCs when applied exogenously during their linear growth. However, as opposed to exogenous HS, the continuous use of FGF-2 during in vitro differentiation completely blocked rMSC mineralization. Furthermore, we show that the effects of both FGF-2 and HS are mediated through FGF receptor 1 (FGFR1) and that inhibition of signaling through this receptor arrests cell growth resulting in the cells being unable to reach the critical density necessary to induce differentiation. Interestingly, blocking FGFR1 signaling in post-confluent osteogenic cultures significantly increased calcium deposition. Taken together our data clearly suggests that FGFR1 signaling plays an important role during osteogenic differentiation, firstly by stimulating cell growth that is closely followed by an inhibitory affect once the cells have reached confluence. It also underlines the importance of HS as a co-receptor for the signaling of endogenous FGF-2 and suggests that purified glycosaminoglycans may be attractive alternatives to growth factors for improved ex vivo growth and differentiation of MSCs.
Resumo:
In situ near-IR transmittance measurements have been used to characterize the density of trapped electrons in dye-sensitized solar cells (DSCs). Measurements have been made under a range experimental conditions including during open circuit photovoltage decay and during recording of the IV characteristic. The optical cross section of electrons at 940 nm was determined by relating the IR absorbance to the density of trapped electrons measured by charge extraction. The value, σn = 5.4 × 10-18 cm2, was used to compare the trapped electron densities in illuminated DSCs under open and short circuit conditions in order to quantify the difference in the quasi Fermi level, nEF. It was found that nEF for the cells studied was 250 meV over wide range of illuminat on intensities. IR transmittance measurements have also been used to quantify shifts in conduction band energy associated with dye adsorption.
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.
Resumo:
Adiabatic compression testing of components in gaseous oxygen is a test method that is utilized worldwide and is commonly required to qualify a component for ignition tolerance under its intended service. This testing is required by many industry standards organizations and government agencies; however, a thorough evaluation of the test parameters and test system influences on the thermal energy produced during the test has not yet been performed. This paper presents a background for adiabatic compression testing and discusses an approach to estimating potential differences in the thermal profiles produced by different test laboratories. A “Thermal Profile Test Fixture” (TPTF) is described that is capable of measuring and characterizing the thermal energy for a typical pressure shock by any test system. The test systems at Wendell Hull & Associates, Inc. (WHA) in the USA and at the BAM Federal Institute for Materials Research and Testing in Germany are compared in this manner and some of the data obtained is presented. The paper also introduces a new way of comparing the test method to idealized processes to perform system-by-system comparisons. Thus, the paper introduces an “Idealized Severity Index” (ISI) of the thermal energy to characterize a rapid pressure surge. From the TPTF data a “Test Severity Index” (TSI) can also be calculated so that the thermal energies developed by different test systems can be compared to each other and to the ISI for the equivalent isentropic process. Finally, a “Service Severity Index” (SSI) is introduced to characterizing the thermal energy of actual service conditions. This paper is the second in a series of publications planned on the subject of adiabatic compression testing.
Resumo:
Local climate is a critical element in the design of energy efficient buildings. In this paper, ten years of historical weather data in Australia's eight capital cities were profiled and analysed to characterize the variations of climatic variables in Australia. The method of descriptive statistics was employed. Either the pattern of cumulative distribution and/or the profile of percentage distribution are presented. It was found that although weather variables vary with different locations, there is often a good, nearly linear relation between a weather variable and its cumulative percentage for the majority of middle part of the cumulative curves. By comparing the slopes of these distribution profiles, it may be possible to determine the relative range of changes of the particular weather variables for a given city. The implications of these distribution profiles of key weather variables on energy efficient building design are also discussed.
Resumo:
Foam-filled conical tubes have recently emerged as efficient energy absorbing devices to mitigate the adverse effects of impacts. The primary aim of this thesis was to generate research and design information on the impact and energy absorption response of empty and foam-filled conical tubes, and to facilitate their application in energy absorbing systems under axial and oblique loading conditions representative of those typically encountered in crashworthiness and impact applications. Finite element techniques supported by experiments and existing results were used in the investigation. Major findings show that the energy absorption response can be effectively controlled by varying geometry and material parameters. A useful empirical formula was developed for providing engineering designers with an initial estimate of the load ratio and hence energy absorption performances of these devices. It was evident that foam-filled conical tubes enhance the energy absorption capacity and stabilise the crush response for both axial and oblique impact loading without a significant increase in the initial peak load. This is practically beneficial when higher kinetic energy needs to be absorbed, thus reducing the impact force transmitted to the protected structure and occupants. Such tubes also increase and maintain the energy absorption capacity under global bending as well as minimise the reduction of energy absorption capacity with increasing load angle. Furthermore, the results also highlight the feasibility of adding a foam-filled conical tube as a supplementary device in energy absorbing systems, since the overall energy absorption performance of such systems can be favourably enhanced by only including a relatively small energy absorbing device. Above all, the results demonstrate the superior performance of foam-filled conical tube for mitigating impact energy in impact and crashworthiness applications.