76 resultados para eddy covariance and meterological tower
Resumo:
Background An increasing body of evidence associates a high level of sitting time with poor health outcomes. The benefits of moderate to vigorous-intensity physical activities to various aspects of health are now well documented; however, individuals may engage in moderate-intensity physical activity for at least 30 minutes on five or more days of the week and still exhibit a high level of sitting time. This purpose of this study was to examine differences in total wellness among adults relative to high/low levels of sitting time combined with insufficient/sufficient physical activity (PA). The construct of total wellness incorporates a holistic approach to the body, mind and spirit components of life, an approach which may be more encompassing than some definitions of health. Methods Data were obtained from 226 adult respondents (27 ± 6 years), including 116 (51%) males and 110 (49%) females. Total PA and total sitting time were assessed with the International Physical Activity Questionnaire (IPAQ) (short-version). The Wellness Evaluation of Lifestyle Inventory was used to assess total wellness. An analysis of covariance (ANCOVA) was utilised to assess the effects of the sitting time/physical activity group on total wellness. A covariate was included to partial out the effects of age, sex and work status (student or employed). Cross-tabulations were used to show associations between the IPAQ derived high/low levels of sitting time with insufficient/sufficient PA and the three total wellness groups (i.e. high level of wellness, moderate wellness and wellness development needed). Results The majority of the participants were located in the high total sitting time and sufficient PA group. There were statistical differences among the IPAQ groups for total wellness [F (2,220) = 32.5 (p <0.001)]. A Chi-square test revealed a significant difference in the distribution of the IPAQ categories within the classification of wellness [χ2 (N = 226) = 54.5, p < .001]. One-hundred percent (100%) of participants who self-rated as high total sitting time/insufficient PA were found in the wellness development needed group. In contrast, 72% of participants who were located in the low total sitting time/sufficient PA group were situated in the moderate wellness group. Conclusion Many participants who meet the physical activity guidelines, in this sample, sit for longer periods of time than the median Australian sitting time. An understanding of the effects of the enhanced PA and reduced sitting time on total wellness can add to the development of public health initiatives. Keywords: IPAQ; The Wellness Evaluation of Lifestyle (WEL); Sedentary lifestyle
Resumo:
Spatial data analysis has become more and more important in the studies of ecology and economics during the last decade. One focus of spatial data analysis is how to select predictors, variance functions and correlation functions. However, in general, the true covariance function is unknown and the working covariance structure is often misspecified. In this paper, our target is to find a good strategy to identify the best model from the candidate set using model selection criteria. This paper is to evaluate the ability of some information criteria (corrected Akaike information criterion, Bayesian information criterion (BIC) and residual information criterion (RIC)) for choosing the optimal model when the working correlation function, the working variance function and the working mean function are correct or misspecified. Simulations are carried out for small to moderate sample sizes. Four candidate covariance functions (exponential, Gaussian, Matern and rational quadratic) are used in simulation studies. With the summary in simulation results, we find that the misspecified working correlation structure can still capture some spatial correlation information in model fitting. When the sample size is large enough, BIC and RIC perform well even if the the working covariance is misspecified. Moreover, the performance of these information criteria is related to the average level of model fitting which can be indicated by the average adjusted R square ( [GRAPHICS] ), and overall RIC performs well.
Resumo:
For clustered survival data, the traditional Gehan-type estimator is asymptotically equivalent to using only the between-cluster ranks, and the within-cluster ranks are ignored. The contribution of this paper is two fold: - (i) incorporating within-cluster ranks in censored data analysis, and; - (ii) applying the induced smoothing of Brown and Wang (2005, Biometrika) for computational convenience. Asymptotic properties of the resulting estimating functions are given. We also carry out numerical studies to assess the performance of the proposed approach and conclude that the proposed approach can lead to much improved estimators when strong clustering effects exist. A dataset from a litter-matched tumorigenesis experiment is used for illustration.
Resumo:
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice.
Resumo:
A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.
Resumo:
The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.
Resumo:
Differences in opportunities and outcomes in the workplace are inherent in a free and competitive market. However when differences between individuals and groups are identified as resulting from particular policies, behaviours or attitudes, any resulting inequality may be identified as unfair. Increasingly, unfair disparities in societies and their workplaces are regularly challenged. Many of the unfair disparities are recognised as caused through unfair discrimination (Anker 1997). When defining discrimination, the International Labour Organization Convention (ILO) No. 111 defines it as “any distinction, exclusion or preference made on the basis of race, colour, sex, religion, political opinion, national extraction, or social origin, which has the effect of nullifying or impairing equality of opportunity or treatment in employment or occupation” (ILO, 1958). Yet, the argument for addressing this ideal of ‘equality of opportunity’ is complex. Ekmekci (2013) identifies the difficulties as the determination of whether any process should be based on equality of opportunity or equality of outcome. In addition, there is the difficulty of determining what exactly constitutes a process for addressing unfair disparity due to the haziness of what constitutes discrimination and controversy in the meaning as well as policy implications of equality (Tomei, 2003).
Resumo:
Objective: To apply genetic analysis of genome-wide association data to study the extent and nature of a shared biological basis between migraine and coronary artery disease (CAD). Methods: Four separate methods for cross-phenotype genetic analysis were applied on data from 2 large-scale genome-wide association studies of migraine (19,981 cases, 56,667 controls) and CAD (21,076 cases, 63,014 controls). The first 2 methods quantified the extent of overlapping risk variants and assessed the load of CAD risk loci in migraineurs. Genomic regions of shared risk were then identified by analysis of covariance patterns between the 2 phenotypes and by querying known genome-wide significant loci. Results: We found a significant overlap of genetic risk loci for migraine and CAD. When stratified by migraine subtype, this was limited to migraine without aura, and the overlap was protective in that patients with migraine had a lower load of CAD risk alleles than controls. Genes indicated by 16 shared risk loci point to mechanisms with potential roles in migraine pathogenesis and CAD, including endothelial dysfunction (PHACTR1) and insulin homeostasis (GIP). Conclusions: The results suggest that shared biological processes contribute to risk of migraine and CAD, but surprisingly this commonality is restricted to migraine without aura and the impact is in opposite directions. Understanding the mechanisms underlying these processes and their opposite relationship to migraine and CAD may improve our understanding of both disorders.
Resumo:
OBJECTIVE To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. METHODS We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. RESULTS We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 x 10(-28) for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 x 10(-20) for the CE score in MO). CONCLUSIONS Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype.
Resumo:
OBJECTIVES To investigate: - (1) whether shared genetic factors influence migraine and anxious depression; - (2) whether the genetic architecture of migraine depends on anxious depression; - (3) whether the association between migraine and anxious depression is causal. BACKGROUND Migraine and anxious depression frequently occur together, but little is known about the mechanisms causing this association. METHODS A twin study was conducted to model the genetic architecture of migraine and anxious depression and the covariance between them. Anxious depression was also added to the model as a moderator variable to examine whether anxious depression affects the genetic architecture of migraine. Causal models were explored with the co-twin control method. RESULTS Modest but significant phenotypic (rP=0.28), genetic (rG=0.30), and nonshared environmental (rE=0.26) correlations were found between the 2 traits. Interestingly, the heritability of migraine depended on the level of anxious depression: the higher the anxious depression score, the lower the relative contribution of genetic factors to the individual differences in migraine susceptibility. The observed risk patterns in discordant twins are most consistent with a bidirectional causal relationship. CONCLUSIONS These findings confirm the genetic association between migraine and anxious depression and are consistent with a syndromic association between the 2 traits. This highlights the importance of taking comorbidity into account in genetic studies of migraine, especially in the context of selection for large-scale genotyping efforts. Genetic studies may be most effective when migraine with and without comorbid anxious depression are treated as separate phenotypes.
Resumo:
The family of location and scale mixtures of Gaussians has the ability to generate a number of flexible distributional forms. The family nests as particular cases several important asymmetric distributions like the Generalized Hyperbolic distribution. The Generalized Hyperbolic distribution in turn nests many other well known distributions such as the Normal Inverse Gaussian. In a multivariate setting, an extension of the standard location and scale mixture concept is proposed into a so called multiple scaled framework which has the advantage of allowing different tail and skewness behaviours in each dimension with arbitrary correlation between dimensions. Estimation of the parameters is provided via an EM algorithm and extended to cover the case of mixtures of such multiple scaled distributions for application to clustering. Assessments on simulated and real data confirm the gain in degrees of freedom and flexibility in modelling data of varying tail behaviour and directional shape.
Resumo:
A computer program has been developed for the prediction of buoyancy-driven laminar and turbulent flow in rectangular air-filled two-dimensional cavities with differentially heated side walls. Laminar flow predictions for a square cavity and Rayleigh numbers from Ra = 10^3 up to the onset of unsteady flow have been obtained. Accurate solutions for Ra = 5 x 10^6, 10^7, 5 x 10^7 and 10^8 are presented and an estimate for the critical Rayleigh number at which the steady laminar flow becomes unsteady is given for this geometry. Numerical predictions of turbulent flow have been obtained for RaH~0(10^9 -10^11 ) and compared with existing experimental data. A previously developed second moment closure model (Behnia et al. 1987) has been used to model the turbulence. Results indicate that a second moment closure model is capable of predicting the observed flow features.
Resumo:
"This chapter discusses laminar and turbulent natural convection in rectangular cavities. Natural convection in rectangular two-dimensional cavities has become a standard problem in numerical heat transfer because of its relevance in understanding a number of problems in engineering. Current research identified a number of difficulties with regard to the numerical methods and the turbulence modeling for this class of flows. Obtaining numerical predictions at high Rayleigh numbers proved computationally expensive such that results beyond Ra ∼ 1014 are rarely reported. The chapter discusses a study in which it was found that turbulent computations in square cavities can't be extended beyond Ra ∼ O (1012) despite having developed a code that proved very efficient for the high Ra laminar regime. As the Rayleigh number increased, thin boundary layers began to form next to the vertical walls, and the central region became progressively more stagnant and highly stratified. Results obtained for the high Ra laminar regime were in good agreement with existing studies. Turbulence computations, although of a preliminary nature, indicated that a second moment closure model was capable of predicting the experimentally observed flow features."--Publisher Summary
Resumo:
In this work we numerically model isothermal turbulent swirling flow in a cylindrical burner. Three versions of the RNG k-epsilon model are assessed against performance of the standard k-epsilon model. Sensitivity of numerical predictions to grid refinement, differing convective differencing schemes and choice of (unknown) inlet dissipation rate, were closely scrutinised to ensure accuracy. Particular attention is paid to modelling the inlet conditions to within the range of uncertainty of the experimental data, as model predictions proved to be significantly sensitive to relatively small changes in upstream flow conditions. We also examine the characteristics of the swirl--induced recirculation zone predicted by the models over an extended range of inlet conditions. Our main findings are: - (i) the standard k-epsilon model performed best compared with experiment; - (ii) no one inlet specification can simultaneously optimize the performance of the models considered; - (iii) the RNG models predict both single-cell and double-cell IRZ characteristics, the latter both with and without additional internal stagnation points. The first finding indicates that the examined RNG modifications to the standard k-e model do not result in an improved eddy viscosity based model for the prediction of swirl flows. The second finding suggests that tuning established models for optimal performance in swirl flows a priori is not straightforward. The third finding indicates that the RNG based models exhibit a greater variety of structural behaviour, despite being of the same level of complexity as the standard k-e model. The plausibility of the predicted IRZ features are discussed in terms of known vortex breakdown phenomena.
Resumo:
Stationary processes are random variables whose value is a signal and whose distribution is invariant to translation in the domain of the signal. They are intimately connected to convolution, and therefore to the Fourier transform, since the covariance matrix of a stationary process is a Toeplitz matrix, and Toeplitz matrices are the expression of convolution as a linear operator. This thesis utilises this connection in the study of i) efficient training algorithms for object detection and ii) trajectory-based non-rigid structure-from-motion.