192 resultados para eco-retrofitting
Resumo:
Extreme sports and extreme sports participants have been most commonly explored from a negative perspective, for example the 'need to take unnecessary risks'. This study reports on findings that indicate a more positive experience. A phenomenological method was used via unstructured interviews with 15 extreme sports participants and other first hand accounts. The extreme sports included B.A.S.E. jumping, big wave surfing, extreme skiing, waterfall kayaking, extreme mountaineering and solo rope-free climbing. Results indicate that participating in activities that involve a real chance of death, fear and the realisation that nature in its extreme is far greater and more powerful than humanity triggers positive life changes, and an eco-centric standpoint.
Resumo:
This paper reports on progress in developing new design and measurement concepts, and translating these concepts into practical applications. This research addresses gaps in ‘best practice’ green building, and is aimed ultimately at replacing green buildings with sustainable urban environments. Building on the author’s previously articulated concepts of Design for Eco-services and Positive Development, this research will demonstrate how to eco-retrofit cities so that they reverse the negative impacts of past design and generate net positive ecological impacts, at no extra cost. In contrast to ‘restorative’ design,this means increasing ecological carrying capacity and natural and social capital through built environment design. Some exemplars for facilitating Positive development will be presented in this talk,such as Green Scaffolding for retrofits, and Green Space Walls for new construction. These structures have been designed to grow and change over time, be easily deconstructed, and entail little waste. The frames support mini-ecospheres that provide a wide range of ecosystem services and biodiversity habitats, as well as heating, cooling and ventilating. In combination, the modules serve to improve human and environmental health. Current work is focused on developing a range of such space frame walls, optimised through an innovative marriage of eco-logical design and virtual modelling.
Resumo:
In the future we will have a detailed ecological model of the whole planet with capabilities to explore and predict the consequences of alternative futures. However, such a planetary eco-model will take time to develop, time to populate with data, and time to validate - time the planet doesn't have. In the interim, we can model the major concentrations of energy use and pollution - our cities - and connect them to form a "talking cities network". Such a networked city model would be much quicker to build and validate. And the advantage of this approach is that it is safer and more effective for us to interfere with the operation of our cities than to tamper directly with the behaviour of natural systems. Essentially, it could be thought of as providing the planet with a nervous system and would empower us to better develop and manage sustainable cities.
Resumo:
A worldwide interest is being generated in the use of fibre reinforced polymer composites (FRP) in rehabilitation of reinforced concrete structures. As a replacement for the traditional steel plates or external post-tensioning in strengthening applications, various types of FRP plates, with their high strength to weight ratio and good resistance to corrosion, represent a class of ideal material in external retrofitting. Within the last ten years, many design guidelines have been published to provide guidance for the selection, design and installation of FRP systems for external strengthening of concrete structures. Use of these guidelines requires understanding of a number of issues pertaining to different properties and structural failure modes specific to these materials. A research initiative funded by the CRC for Construction Innovation was undertaken (primarily at RMIT) to develop a decision support tool and a user friendly guide for use of fibre reinforced polymer composites in rehabilitation of concrete structures. The user guidelines presented in this report were developed after industry consultation and a comprehensive review of the state of the art technology. The scope of the guide was mainly developed based on outcomes of two workshops with Queensland Department of Main Roads (QDMR). The document covers material properties, recommended construction requirements, design philosophy, flexural, shear and torsional strengthening of beams and strengthening of columns. In developing this document, the guidelines published on FIB Bulletin 14 (2002), Task group 9.3, International Federation of Structural Concrete (FIB) and American Concrete Institute Committee 440 report (2002) were consulted in conjunction with provisions of the Austroads Bridge design code (1992) and Australian Concrete Structures code AS3600 (2002). In conclusion, the user guide presents design examples covering typical strengthening scenarios.
Resumo:
The Regenerating Construction Project for the CRC for Construction Innovation aims to assist in the delivery of demonstrably superior ‘green’ buildings. Components of the project address eco-efficient redesign, achieving a smaller ecological footprint, enhancing indoor environment and minimising waste in design and construction. The refurbishment of Council House 1 for Melbourne City Council provides an opportunity to develop and demonstrate tools that will be of use for commercial building refurbishment generally. It is hoped that the refurbishment will act as an exemplar project to demonstrate environmentally friendly possibilities for office building refurbishment.
Resumo:
In recent years considerable effort has gone into quantifying the reuse and recycling potential of waste generated by residential construction. Unfortunately less information is available for the commercial refurbishment sector. It is hypothesised that significant economic and environmental benefit can be derived from closer monitoring of the commercial construction waste stream. With the aim of assessing these benefits, the authors are involved in ongoing case studies to record both current standard practice and the most effective means of improving the eco-efficiency of materials use in office building refurbishments. This paper focuses on the issues involved in developing methods for obtaining the necessary information on better waste management practices and establishing benchmark indicators. The need to create databases to establish benchmarks of waste minimisation best practice in commercial construction is stressed. Further research will monitor the delivery of case study projects and the levels of reuse and recycling achieved in directly quantifiable ways
Resumo:
This paper discusses challenges to developers of a national Life Cycle Inventory (LCI) database on which to base assessment of building environmental impacts and a key to development of a fully integrated eco-design tool created for automated eco-efficiency assessment of commercial building design direct from 3D CAD. The scope of this database includes Australian and overseas processing burdens involved in acquiring, processing, transporting, fabricating, finishing and using metals, masonry, timber, glazing, ceramics, plastics, fittings, composites and coatings. Burdens are classified, calculated and reported for all flows of raw materials, fuels, energy and emissions to and from the air, soil and water associated with typical products and services in building construction, fitout and operation. The aggregated life cycle inventory data provides the capacity to generate environmental impact assessment reports based on accepted performance indicators. Practitioners can identify hot spots showing high environmental burdens of a proposed design and drill down to report on specific building components. They can compare assessments with case studies and operational estimates to assist in eco-efficient design of a building, fitout and operation.
Resumo:
LCADesign software package is a real-time environmental impact calculator for commercial property that works directly from the building designer's model. It enables developers, building designers, architects, engineers, builders, manufacturers and government bodies to optimise the eco-impact of a building as the design model evolves instead of waiting months for expert analysis. By integrating with the Building Information Models (BIMs) generated by 3D computer-aided drafting, LCADesign builds eco-efficiency into the design stage and measures the environmental values and risks of materials in commercial buildings
Resumo:
James Lovelock has been one of the most influential and controversial environmentalists of the modern era, and his lastest book, The Revenge of Gaia, is perhaps his most controversial. Lovelock foreshadows a bleak future of drastic temperature increases, due to global warming, with the prospect that only a remnant of humanity might survive in Antarctica. The work also entails an interesting commentary on environmental philosophy and politics. Lovelock (like Lord Taverne)is scathing about the shortcomings of eco-fundamentalism, notably evident with the Greens, and argues that instead what we need is a pragmatic environmentalism to deal with our global challenges.
Resumo:
It is difficult to present a paradigm shift from resource efficient to ecologically sustainable design, when many students have not yet thought about what sustainability is, let alone what it implies for the design of the built environment ‘Positive Development’ requires students to think beyond green building to something that does not yet exist. The concept of ecologically positive development suggests a product, building, system or urban area that leaves the ecological base and public estate better off than if no development had occurred. For some years now, I have experimented with communicating this paradigm shift in design to students and professionals ‐ with mixed results. This paper discusses some of the challenges, failures and successes in shifting design studio work from environmentally‐sensitive to eco-positive. The framework underlying this exploration is action research. Conclusions about the success of the strategies used for overcoming perceptual barriers to new typologies of architecture are drawn from recent student feedback. The talk will show examples of student projects that attempt eco-positive development projects.
Resumo:
Research has shown that road lane width impacts on driver behaviour. This literature review provides guidelines to assist in the design, construction and retrofitting of urban roads to accommodate road users' safety requirements. It focuses on the impacts of lane widths on cyclists and motor vehicle safety behaviour. The literature review commenced with a search of library databases. Peer reviewed articles and road authority (local, state and national) reports were reviewed. The majority of studies investigating the effects of lane width on driver behaviour were simulator based, while research into cycling safety involved data collected from actual traffic environments. Results show that marked road lane width influences perceived task difficulty, risk perception and possibly speed choice. The positioning of cyclists in traffic lanes is influenced by the presence of on-road cycling facilities and the total roadway width. The lateral displacement between bicycle and vehicle is smallest when a bicycle facility is present. Lower, or reduced, vehicle speeds play a significant role in improving bicyclist and pedestrian safety. It is also shown that if road lane widths in urban areas were reduced, to a functional width that was less than the current guidelines of 3.5m, it could result in a safer road environment for all road users.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
In the age of knowledge economy, knowledge production, and where, how and by whom it is produced, has become one of the most important factors in determining the quality of life and competitiveness of a city. In different parts of the world, cities that are the centres of knowledge production are branded under different names, e.g. knowledge city, creative city, ubiquitous eco city, smart city. This paper focuses on the core building block of these cities: ‘knowledge precincts’ that are the catalytic magnet infrastructures impacting knowledge production. The paper discusses the increasing importance of knowledge-based urban development within the paradigm of knowledge economy, and the role of knowledge community precincts as an instrument to seed the foundation of knowledge production. This paper explores knowledge based urban development, particularly knowledge community precinct development, potentials of Sydney, Melbourne and Brisbane, and benchmarks them against Boston. The paper also draws conclusions and recommendations for other cities considering knowledge based development.
Resumo:
In this chapter I introduce an ecological-philosophical approach to artmaking that has guided my work over the past 16 years. I call this ‘Ecosophical praxis’. To illustrate how this infuses and directs my research methodologies, I draw upon a case study called Knowmore (House of Commons), an emerging interactive installation due for first showings in late 2008. This allows me to tease out the complex interrelationships between research and practice within my work, and describe how they comment upon and model these eco-cultural theories. I conclude with my intentions and hopes for the continued emergence of a contemporary eco-political modality of new media praxis that self-reflexively questions how we might re-focus future practices upon ‘sustaining the sustainable’.
Resumo:
Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.