193 resultados para detection systems
Resumo:
Acoustically, vehicles are extremely noisy environments and as a consequence audio-only in-car voice recognition systems perform very poorly. Seeing that the visual modality is immune to acoustic noise, using the visual lip information from the driver is seen as a viable strategy in circumventing this problem. However, implementing such an approach requires a system being able to accurately locate and track the driver’s face and facial features in real-time. In this paper we present such an approach using the Viola-Jones algorithm. Using this system, we present our results which show that using the Viola-Jones approach is a suitable method of locating and tracking the driver’s lips despite the visual variability of illumination and head pose.
Resumo:
Road features extraction from remote sensed imagery has been a long-term topic of great interest within the photogrammetry and remote sensing communities for over three decades. The majority of the early work only focused on linear feature detection approaches, with restrictive assumption on image resolution and road appearance. The widely available of high resolution digital aerial images makes it possible to extract sub-road features, e.g. road pavement markings. In this paper, we will focus on the automatic extraction of road lane markings, which are required by various lane-based vehicle applications, such as, autonomous vehicle navigation, and lane departure warning. The proposed approach consists of three phases: i) road centerline extraction from low resolution image, ii) road surface detection in the original image, and iii) pavement marking extraction on the generated road surface. The proposed method was tested on the aerial imagery dataset of the Bruce Highway, Queensland, and the results demonstrate the efficiency of our approach.
Resumo:
Abandoned object detection (AOD) systems are required to run in high traffic situations, with high levels of occlusion. Systems rely on background segmentation techniques to locate abandoned objects, by detecting areas of motion that have stopped. This is often achieved by using a medium term motion detection routine to detect long term changes in the background. When AOD systems are integrated into person tracking system, this often results in two separate motion detectors being used to handle the different requirements. We propose a motion detection system that is capable of detecting medium term motion as well as regular motion. Multiple layers of medium term (static) motion can be detected and segmented. We demonstrate the performance of this motion detection system and as part of an abandoned object detection system.
Resumo:
Performance evaluation of object tracking systems is typically performed after the data has been processed, by comparing tracking results to ground truth. Whilst this approach is fine when performing offline testing, it does not allow for real-time analysis of the systems performance, which may be of use for live systems to either automatically tune the system or report reliability. In this paper, we propose three metrics that can be used to dynamically asses the performance of an object tracking system. Outputs and results from various stages in the tracking system are used to obtain measures that indicate the performance of motion segmentation, object detection and object matching. The proposed dynamic metrics are shown to accurately indicate tracking errors when visually comparing metric results to tracking output, and are shown to display similar trends to the ETISEO metrics when comparing different tracking configurations.
Resumo:
Object tracking systems require accurate segmentation of the objects from the background for effective tracking. Motion segmentation or optical flow can be used to segment incoming images. Whilst optical flow allows multiple moving targets to be separated based on their individual velocities, optical flow techniques are prone to errors caused by changing lighting and occlusions, both common in a surveillance environment. Motion segmentation techniques are more robust to fluctuating lighting and occlusions, but don't provide information on the direction of the motion. In this paper we propose a combined motion segmentation/optical flow algorithm for use in object tracking. The proposed algorithm uses the motion segmentation results to inform the optical flow calculations and ensure that optical flow is only calculated in regions of motion, and improve the performance of the optical flow around the edge of moving objects. Optical flow is calculated at pixel resolution and tracking of flow vectors is employed to improve performance and detect discontinuities, which can indicate the location of overlaps between objects. The algorithm is evaluated by attempting to extract a moving target within the flow images, given expected horizontal and vertical movement (i.e. the algorithms intended use for object tracking). Results show that the proposed algorithm outperforms other widely used optical flow techniques for this surveillance application.
Resumo:
Acquiring accurate silhouettes has many applications in computer vision. This is usually done through motion detection, or a simple background subtraction under highly controlled environments (i.e. chroma-key backgrounds). Lighting and contrast issues in typical outdoor or office environments make accurate segmentation very difficult in these scenes. In this paper, gradients are used in conjunction with intensity and colour to provide a robust segmentation of motion, after which graph cuts are utilised to refine the segmentation. The results presented using the ETISEO database demonstrate that an improved segmentation is achieved through the combined use of motion detection and graph cuts, particularly in complex scenes.
Resumo:
This chapter looks at issues of non-stationarity in determining when a transient has occurred and when it is possible to fit a linear model to a non-linear response. The first issue is associated with the detection of loss of damping of power system modes. When some control device such as an SVC fails, the operator needs to know whether the damping of key power system oscillation modes has deteriorated significantly. This question is posed here as an alarm detection problem rather than an identification problem to get a fast detection of a change. The second issue concerns when a significant disturbance has occurred and the operator is seeking to characterize the system oscillation. The disturbance initially is large giving a nonlinear response; this then decays and can then be smaller than the noise level ofnormal customer load changes. The difficulty is one of determining when a linear response can be reliably identified between the non-linear phase and the large noise phase of thesignal. The solution proposed in this chapter uses “Time-Frequency” analysis tools to assistthe extraction of the linear model.
Resumo:
Information fusion in biometrics has received considerable attention. The architecture proposed here is based on the sequential integration of multi-instance and multi-sample fusion schemes. This method is analytically shown to improve the performance and allow a controlled trade-off between false alarms and false rejects when the classifier decisions are statistically independent. Equations developed for detection error rates are experimentally evaluated by considering the proposed architecture for text dependent speaker verification using HMM based digit dependent speaker models. The tuning of parameters, n classifiers and m attempts/samples, is investigated and the resultant detection error trade-off performance is evaluated on individual digits. Results show that performance improvement can be achieved even for weaker classifiers (FRR-19.6%, FAR-16.7%). The architectures investigated apply to speaker verification from spoken digit strings such as credit card numbers in telephone or VOIP or internet based applications.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of the sensors involved (as opposed to radar). This paper describes the development and evaluation of a vision-based collision detection algorithm suitable for fixed-wing aerial robotics. The system was evaluated using highly realistic vision data of the moments leading up to a collision. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We make use of the enormous potential of graphic processing units to achieve processing rates of 30Hz (for images of size 1024-by- 768). Currently, integration in the final platform is under way.
Resumo:
Machine vision represents a particularly attractive solution for sensing and detecting potential collision-course targets due to the relatively low cost, size, weight, and power requirements of vision sensors (as opposed to radar and TCAS). This paper describes the development and evaluation of a real-time vision-based collision detection system suitable for fixed-wing aerial robotics. Using two fixed-wing UAVs to recreate various collision-course scenarios, we were able to capture highly realistic vision (from an onboard camera perspective) of the moments leading up to a collision. This type of image data is extremely scarce and was invaluable in evaluating the detection performance of two candidate target detection approaches. Based on the collected data, our detection approaches were able to detect targets at distances ranging from 400m to about 900m. These distances (with some assumptions about closing speeds and aircraft trajectories) translate to an advanced warning of between 8-10 seconds ahead of impact, which approaches the 12.5 second response time recommended for human pilots. We overcame the challenge of achieving real-time computational speeds by exploiting the parallel processing architectures of graphics processing units found on commercially-off-the-shelf graphics devices. Our chosen GPU device suitable for integration onto UAV platforms can be expected to handle real-time processing of 1024 by 768 pixel image frames at a rate of approximately 30Hz. Flight trials using manned Cessna aircraft where all processing is performed onboard will be conducted in the near future, followed by further experiments with fully autonomous UAV platforms.
Resumo:
Motion has been examined in biology to be a critical component for obstacle avoidance and navigation. In particular, optical flow is a powerful motion cue that has been exploited in many biological systems for survival. In this paper, we investigate an obstacle detection system that uses optical flow to obtain range information to objects. Our experimental results demonstrate that optical flow is capable of providing good obstacle information but has obvious failure modes. We acknowledge that our optical flow system has certain disadvantages and cannot be solely used for navigation. Instead, we believe that optical flow is a critical visual subsystem used when moving at reason- able speeds. When combined with other visual subsystems, considerable synergy can result.
Resumo:
Acoustically, car cabins are extremely noisy and as a consequence audio-only, in-car voice recognition systems perform poorly. As the visual modality is immune to acoustic noise, using the visual lip information from the driver is seen as a viable strategy in circumventing this problem by using audio visual automatic speech recognition (AVASR). However, implementing AVASR requires a system being able to accurately locate and track the drivers face and lip area in real-time. In this paper we present such an approach using the Viola-Jones algorithm. Using the AVICAR [1] in-car database, we show that the Viola- Jones approach is a suitable method of locating and tracking the driver’s lips despite the visual variability of illumination and head pose for audio-visual speech recognition system.
Resumo:
Approaches with Vertical Guidance (APV) can provide greater safety and cost savings to general aviation through accurate GPS horizontal and vertical navigation. However, GPS needs augmentation to achieve APV fault detection requirements. Aircraft Based Augmentation Systems (ABAS) fuse GPS with additional sensors at the aircraft. Typical ABAS designs assume high-quality inertial sensors with Kalman filters but these are too expensive for general aviation. Instead of using high-quality (and expensive) sensors, the purpose of this paper is to investigate augmenting GPS with a low-quality MEMS IMU and Aircraft Dynamic Model (ADM). The IMU and ADM are fused together using a multiple model fusion strategy in a bank of Extended Kalman Filters (EKF) with the Normalized Solution Separation (NSS) fault detection scheme. A tightly-coupled configuration with GPS is used and frequent GPS updates are applied to the IMU and ADM to compensate for their errors. Based upon a simulated APV approach, the performance of this architecture in detecting a GPS ramp fault is investigated showing a performance improvement over a GPS-only “snapshot” implementation of the NSS method. The effect of fusing the IMU with the ADM is evaluated by comparing a GPS-IMU-ADM EKF with a GPS-IMU EKF where a small improvement in protection levels is shown.