385 resultados para deposition temperature
Resumo:
Maintenance of bridge structures is a major issue for the Queensland Department of Main Roads. In the previous phase of this CRC project an initial approach was made towards the development of a program for lifetime prediction of metallic bridge components. This involved the analysis of five representative bridge structures with respect to salt deposition (a major contributor to metallic corrosion) to determine common elements to be used as “cases” - those defined for buildings are not applicable. The five bridges analysed included the Gladstone Port Access Road Overpass, Stewart Road Overpass, South Johnstone River Bridge, Johnson Creek Bridge and the Ward River Bridge.
Resumo:
Maintenance of bridge structures is a major issue for the Queensland Department of Main Roads. In the previous phase of this CRC project an initial approach was made towards the development of a program for lifetime prediction of metallic bridge components. This involved the analysis of five representative bridge structures with respect to salt deposition (a major contributor to metallic corrosion) to determine common elements to be used as “cases” - those defined for buildings are not applicable. The five bridges analysed included the Gladstone Port Access Road Overpass, Stewart Road Overpass, South Johnstone River Bridge, Johnson Creek Bridge and the Ward River Bridge.
Resumo:
Application of cell-–biomaterial systems in regenerative medicine can be facilitated by their successful low temperature preservation. Vitrification, which avoids ice crystal formation by amorphous solidification, is an emerging approach to cryopreservation. Developing vitrification strategy, effective cryopreservation of alginate–fibrin beads with porcine mesenchymal stromal cells has been achieved in this study. The cell–biomaterial constructs were pre-cultured for 20 days before cryopreservation, allowing for cell proliferation and construct stabilization. Ethylene glycol (EG) was employed as the basic cryoprotectant for two equilibration solutions. Successful cryopreservation of the constructs was achieved using vitrification solution composed of penetrating (EG MW 62 Da) and non-penetrating (sucrose MW 342 Da) cryoprotectants. Stepwise procedure of introduction to and removal of cryoprotectants was brief; direct plunging into liquid nitrogen was applied. Cell viability, evaluated by combining live/death staining and confocal laser microscopy, was similar for both control and vitrified cells in the beads. No detectable damage of microstructure of cryopreserved beads was found as shown by scanning electron microscopy. Both osteogenically induced control and vitrified cells in the constructs were equally capable of mineral production and deposition. There was no statistically significant difference in metabolic activity and proliferation between both groups during the entire culture period. Our study leads to the conclusion that the developed cryopreservation protocol allowed to maintain the integrity of the beads while preserving the ability of the pig bone marrow derived mesenchymal stromal cells to proliferate and subsequently differentiate; demonstrating that vitrification is a promising approach for cryopreser-vation of “ready-to-use” cell–biomaterial constructs.
Resumo:
A few studies examined interactive effects between air pollution and temperature on health outcomes. This study is to examine if temperature modified effects of ozone and cardiovascular mortality in 95 large US cities. A nonparametric and a parametric regression models were separately used to explore interactive effects of temperature and ozone on cardiovascular mortality during May and October, 1987-2000. A Bayesian meta-analysis was used to pool estimates. Both models illustrate that temperature enhanced the ozone effects on mortality in the northern region, but obviously in the southern region. A 10-ppb increment in ozone was associated with 0.41 % (95% posterior interval (PI): -0.19 %, 0.93 %), 0.27 % (95% PI: -0.44 %, 0.87 %) and 1.68 % (95% PI: 0.07 %, 3.26 %) increases in daily cardiovascular mortality corresponding to low, moderate and high levels of temperature, respectively. We concluded that temperature modified effects of ozone, particularly in the northern region.
Resumo:
Total deposition of petrol, diesel and environmental tobacco smoke (ETS) aerosols in the human respiratory tract for nasal breathing conditions was computed for 14 nonsmoking volunteers, considering the specific anatomical and respiratory parameters of each volunteer and the specific size distribution for each inhalation experiment. Theoretical predictions were 34.6% for petrol, 24.0% for diesel, and 18.5% for ETS particles. Compared to the experimental results, predicted deposition values were consistently smaller than the measured data (41.4% for petrol, 29.6% for diesel, and 36.2% for ETS particles). The apparent discrepancy between experimental data on total deposition and modeling results may be reconciled by considering the non-spherical shape of the test aerosols by diameter-dependent dynamic shape factors to account for differences between mobility-equivalent and volume-equivalent or thermodynamic diameters. While the application of dynamic shape factors is able to explain the observed differences for petrol and diesel particles, additional mechanisms may be required for ETS particle deposition, such as the size reduction upon inspiration by evaporation of volatile compounds and/or condensation-induced restructuring, and, possibly, electrical charge effects.
Temperature variation and emergency hospital admissions for stroke in Brisbane, Australia, 1996-2005
Resumo:
Stroke is a leading cause of disability and death. This study evaluated the association between temperature variation and emergency admissions for stroke in Brisbane, Australia. Daily emergency admissions for stroke, meteorologic and air pollution data were obtained for the period of January 1996 to December 2005. The relative risk of emergency admissions for stroke was estimated with a generalized estimating equations (GEE) model. For primary intracerebral hemorrhage (PIH) emergency admissions, the average daily PIH for the group aged < 65 increased by 15% (95% Confidence Interval (CI): 5, 26%) and 12% (95% CI: 2, 22%) for a 1°C increase in daily maximum temperature and minimum temperature in summer, respectively, after controlling for potential confounding effects of humidity and air pollutants. For ischemic stroke (IS) emergency admissions, the average daily IS for the group aged ≥ 65 decreased by 3% (95% CI: -6, 0%) for a 1°C increase in daily maximum temperature in winter after adjustment for confounding factors. Temperature variation was significantly associated with emergency admissions for stroke, and its impact varied with different type of stroke. Health authorities should pay greater attention to possible increasing emergency care for strokes when temperature changes, in both summer and winter.
Resumo:
Zeolite N was produced from a variety of kaolinites and montmorillonites at low temperature (b100 °C) in a constantly stirred reactor using potassic and potassic+sodic mother liquors with chloride or hydroxyl anions. Reactions were complete (N95% product) in less than 20 h depending on initial batch composition and type of clay minerals. Zeolite N with 1.0bSi/Alb2.2 was produced under these conditions using KOH in the presence of KCl, NaCl, KCl+NaCl and KCl+NaOH. Zeolite N was also formed under high potassium molarities in the absence of KCl. Zeolite synthesis was more sensitive to water content and temperature when sodium was used in initial batch compositions. Syntheses of zeolite N by these methods were undertaken at bench, pilot and industrial scales.
Resumo:
Hot and cold temperatures significantly increase mortality rates around the world, but which measure of temperature is the best predictor of mortality is not known. We used mortality data from 107 US cities for the years 1987–2000 and examined the association between temperature and mortality using Poisson regression and modelled a non-linear temperature effect and a non-linear lag structure. We examined mean, minimum and maximum temperature with and without humidity, and apparent temperature and the Humidex. The best measure was defined as that with the minimum cross-validated residual. We found large differences in the best temperature measure between age groups, seasons and cities, and there was no one temperature measure that was superior to the others. The strong correlation between different measures of temperature means that, on average, they have the same predictive ability. The best temperature measure for new studies can be chosen based on practical concerns, such as choosing the measure with the least amount of missing data.
Resumo:
Cold-formed steel beams are increasingly used as floor joists and bearers in residential, industrial and commercial buildings. Their structural behaviour and moment capacities are influenced by lateral-torsional buckling and hence a research study was undertaken to investigate the lateral-torsional buckling behaviour of cold-formed steel lipped channel beams at ambient and elevated temperatures. For this purpose a finite element model of a simply supported cold-formed steel lipped channel beam under uniform bending was developed first and validated using available numberical and experimental results. It was then used in a detailed parametric study to simulate the lateral-torsional behaviour of cold-formed steel beams under varying conditions. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in Australia, New Zealand, American and European codes for cold-formed steel structures. Some very interesting results have been obtained. European design rules are found to be conservative while Australian and American design rules are unsafe. This paper presents the results of finite element analyses for ambient temperature conditions, and the comparison with the current design rules.
Resumo:
Smart materials, such as thin-film piezoelectric polymers, are interesting for potential applications on Gossamer spacecraft. This investigation aims to predict the performance and long-term stability of the piezoelectric properties of poly(vinylidene fluoride) (PVDF) and its copolymers under conditions simulating the low-Earthorbit environment. To examine the effects of temperature on the piezoelectric properties of PVDF, poly(vinylidenefluoride-co-trifluoroethylene), and poly(vinylidenefluoride-cohexafluoropropylene), the d33 piezoelectric coefficients were measured up to 160 8C, and the electric displacement/electric field (D–E) hysteresis loops were measured from �80 to þ110 8C. The room-temperature d33 coefficient of PVDF homopolymer films, annealed at 50, 80, and 125 8C, dropped rapidly within a few days of thermal exposure and then remained unchanged. In contrast, the TrFE copolymer exhibited greater thermal stability than the homopolymer, with d33 remaining almost unchanged up to 125 8C. The HFP copolymer exhibited poor retention of d33 at temperatures above 80 8C. In situ D–E loop measurements from �80 to þ110 8C showed that the remanent polarization of the TrFE copolymer was more stable than that of the PVDF homopolymer. D–E hysteresis loop and d33 results were also compared with the deflection of the PVDF homopolymer and TrFE copolymer bimorphs tested over a wide temperature range.