90 resultados para density based averaging


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticle manipulation by various plasma forces in near-substrate areas of the Integrated Plasma-Aided Nanofabrication Facility (IPANF) is investigated. In the IPANF, high-density plasmas of low-temperature rf glow discharges are sustained. The model near-substrate area includes a variable-length pre-sheath, where a negatively charged nanoparticle is accelerated, and a self-consistent collisionless sheath with a repulsive electrostatic potential. Conditions enabling the nanoparticle to overcome the repulsive barrier and deposit onto the substrate are investigated numerically and experimentally. Under certain conditions the momentum gained by the nanoparticle in the pre-sheath area appears to be sufficient for the driving ion drag force to outbalance the repulsive electrostatic and thermophoretic forces. Numerical results are applied for the explanation of size-selective nanoparticle deposition in the Ar+H2+CH4 plasma-assisted chemical vapor deposition of various carbon nanostructure patterns for electron field emitters and are cross-referenced by the field emission scanning electron microscopy. It is shown that the nanoparticles can be efficiently manipulated by the temperature gradient-controlled thermophoretic force. Experimentally, the temperature gradients in the near-substrate areas are measured in situ by means of the temperature gradient probe and related to the nanofilm fabrication conditions. The results are relevant to plasma-assisted synthesis of numerous nanofilms employing structural incorporation of the plasma-grown nanoparticles, including but not limited to nanofabrication of ordered single-crystalline carbon nanotip arrays for electron field emission applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-density inductively coupled plasma (ICP)-assisted self-assembly of the ordered arrays of various carbon nanostructures (NS) for the electron field emission applications is reported. Carbon-based nano-particles, nanotips, and pyramid-like structures, with the controllable shape, ordering, and areal density are grown under remarkably low process temperatures (260-350 °C) and pressures (below 0.1 Torr), on the same Ni-based catalyst layers, in a DC bias-controlled floating temperature regime. A high degree of positional and directional ordering, elevated sp2 content, and a well-structured graphitic morphology are achieved without the use of pre-patterned or externally heated substrates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different aspects of the plasma-enhanced chemical vapor deposition of various carbon nanostructures in the ionized gas phase of high-density, low-temperature reactive plasmas of Ar+H2+CH4 gas mixtures are studied. The growth techniques, surface morphologies, densities and fluxes of major reactive species in the discharge, and effects of the transport of the plasma-grown nanoparticles through the near-substrate plasma sheath are examined. Possible growth precursors of the carbon nanostructures are also discussed. In particular, the experimental and numerical results indicate that it is likely that the aligned carbon nanotip structures are predominantly grown by the molecular and radical units, whereas the plasma-grown nanoparticles are crucial components of polymorphous carbon films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Manipulation of a single nanoparticle in the near-substrate areas of high-density plasmas of low-temperature glow discharges is studied. It is shown that the nanoparticles can be efficiently manipulated by the thermophoretic force controlled by external heating of the substrate stage. Particle deposition onto or repulsion from nanostructured carbon surfaces critically depends on the values of the neutral gas temperature gradient in the near-substrate areas, which is directly measured in situ in different heating regimes by originally developed temperature gradient probe. The measured values of the near-surface temperature gradient are used in the numerical model of nanoparticle dynamics in a variable-length presheath. Specific conditions enabling the nanoparticle to overcome the repulsive potential and deposit on the substrate during the discharge operation are investigated. The results are relevant to fabrication of various nanostructured films employing structural incorporation of the plasma-grown nanoparticles, in particular, to nanoparticle deposition in the plasma-enhanced chemical-vapor deposition of carbon nanostructures in hydrocarbon-based plasmas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Control and diagnostics of low-frequency (∼ 500 kHz) inductively coupled plasmas for chemical vapor deposition (CVD) of nano-composite carbon nitride-based films is reported. Relation between the discharge control parameters, plasma electron energy distribution/probability functions (EEDF/EEPF), and elemental composition in the deposited C-N based thin films is investigated. Langmuir probe technique is employed to monitor the plasma density and potential, effective electron temperature, and EEDFs/EEPFs in Ar + N2 + CH4 discharges. It is revealed that varying RF power and gas composition/pressure one can engineer the EEDFs/EEPFs to enhance the desired plasma-chemical gas-phase reactions thus controlling the film chemical structure. Auxiliary diagnostic tools for study of the RF power deposition, plasma composition, stability, and optical emission are discussed as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slippage in the contact roller-races has always played a central role in the field of diagnostics of rolling element bearings. Due to this phenomenon, vibrations triggered by a localized damage are not strictly periodic and therefore not detectable by means of common spectral functions as power spectral density or discrete Fourier transform. Due to the strong second order cyclostationary component, characterizing these signals, techniques such as cyclic coherence, its integrated form and square envelope spectrum have proven to be effective in a wide range of applications. An expert user can easily identify a damage and its location within the bearing components by looking for particular patterns of peaks in the output of the selected cyclostationary tool. These peaks will be found in the neighborhood of specific frequencies, that can be calculated in advance as functions of the geometrical features of the bearing itself. Unfortunately the non-periodicity of the vibration signal is not the only consequence of the slippage: often it also involves a displacement of the damage characteristic peaks from the theoretically expected frequencies. This issue becomes particularly important in the attempt to develop highly automated algorithms for bearing damage recognition, and, in order to correctly set thresholds and tolerances, a quantitative description of the magnitude of the above mentioned deviations is needed. This paper is aimed at identifying the dependency of the deviations on the different operating conditions. This has been possible thanks to an extended experimental activity performed on a full scale bearing test rig, able to reproduce realistically the operating and environmental conditions typical of an industrial high power electric motor and gearbox. The importance of load will be investigated in detail for different bearing damages. Finally some guidelines on how to cope with such deviations will be given, accordingly to the expertise obtained in the experimental activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells are the fundamental building block of plant based food materials and many of the food processing born structural changes can fundamentally be derived as a function of the deformations of the cellular structure. In food dehydration the bulk level changes in porosity, density and shrinkage can be better explained using cellular level deformations initiated by the moisture removal from the cellular fluid. A novel approach is used in this research to model the cell fluid with Smoothed Particle Hydrodynamics (SPH) and cell walls with Discrete Element Methods (DEM), that are fundamentally known to be robust in treating complex fluid and solid mechanics. High Performance Computing (HPC) is used for the computations due to its computing advantages. Comparing with the deficiencies of the state of the art drying models, the current model is found to be robust in replicating drying mechanics of plant based food materials in microscale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on charge transport and density of trap states (trap DOS) in ambipolar diketopyrrolopyrrole-benzothiadiazole copolymer thin-film transistors. This semiconductor possesses high electron and hole field-effect mobilities of up to 0.6 cm 2/V-s. Temperature and gate-bias dependent field-effect mobility measurements are employed to extract the activation energies and trap DOS to understand its unique high mobility balanced ambipolar charge transport properties. The symmetry between the electron and hole transport characteristics, parameters and activation energies is remarkable. We believe that our work is the first charge transport study of an ambipolar organic/polymer based field-effect transistor with room temperature mobility higher than 0.1 cm 2/V-s in both electrons and holes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic photovoltaic devices with either bulk heterojunction (BHJ) or nanoparticulate (NP) active layers have been prepared from a 1:2 blend of (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene}) (PDPP-TNT) and the fullerene acceptor, ([6,6]-phenyl C71-butyric acid methyl ester) (PC70BM). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been used to investigate the morphology of the active layers of the two approaches. Mild thermal treatment of the NP film is required to promote initial joining of the NPs in order for the devices to function, however the NP structure is retained. Consequently, whereas gross phase segregation of the active layer occurs in the BHJ device spin cast from chloroform, the nanoparticulate approach retains control of the material domain sizes on the length scale of exciton diffusion in the materials. As a result, NP devices are found to generate more than twice the current density of BHJ devices and have a substantially greater overall efficiency. The use of aqueous nanoparticulate dispersions offers a promising approach to control the donor acceptor morphology on the nanoscale with the benefit of environmentally- friendly, solution-based fabrication. © 2014 the Owner Societies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ~0.4 mF cm−2, whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ~4.3 mF cm−2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg−1) and power density (250–450 kW kg−1).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical aptamer-based (E-AB) sensors represent an emerging class of recently developed sensors. However, numerous of these sensors are limited by a low surface density of electrode-bound redox-oligonucleotides which are used as probe. Here we propose to use the concept of electrochemical current rectification (ECR) for the enhancement of the redox signal of E-AB sensors. Commonly, the probe-DNA performs a change in conformation during target binding and enables a nonrecurring charge transfer between redox-tag and electrode. In our system, the redox-tag of the probe-DNA is continuously replenished by solution-phase redox molecules. A unidirectional electron transfer from electrode via surface-linked redox-tag to the solution-phase redox molecules arises that efficiently amplifies the current response. Using this robust and straight-forward strategy, the developed sensor showed a substantial signal amplification and consequently improved sensitivity with a calculated detection limit of 114 nM for ATP, which was improved by one order of magnitude compared with the amplification-free detection and superior to other previous detection results using enzymes or nanomaterials-based signal amplification. To the best of our knowledge, this is the first demonstration of an aptamer-based electrochemical biosensor involving electrochemical rectification, which can be presumably transferred to other biomedical sensor systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a more accurate method to determine the density of trap states in a polymer field-effect transistor. In the approach, we describe in this letter, we take into consideration the sub-threshold behavior in the calculation of the density of trap states. This is very important since the sub-threshold regime of operation extends to fairly large gate voltages in these disordered semiconductor based transistors. We employ the sub-threshold drift-limited mobility model (for sub-threshold response) and the conventional linear mobility model for above threshold response. The combined use of these two models allows us to extract the density of states from charge transport data much more accurately. We demonstrate our approach by analyzing data from diketopyrrolopyrrole based co-polymer transistors with high mobility. This approach will also work well for other disordered semiconductors in which sub-threshold conduction is important.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In an estuary, mixing and dispersion are the result of the combination of large scale advection and small scale turbulence which are both complex to estimate. A field study was conducted in a small sub-tropical estuary in which high frequency (50 Hz) turbulent data were recorded continuously for about 48 hours. A triple decomposition technique was introduced to isolate the contributions of tides, resonance and turbulence in the flow field. A striking feature of the data set was the slow fluctuations which exhibited large amplitudes up to 50% the tidal amplitude under neap tide conditions. The triple decomposition technique allowed a characterisation of broader temporal scales of high frequency fluctuation data sampled during a number of full tidal cycles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction The Global Burden of Disease Study 2010 estimated the worldwide health burden of 291 diseases and injuries and 67 risk factors by calculating disability-adjusted life years (DALYs). Osteoporosis was not considered as a disease, and bone mineral density (BMD) was analysed as a risk factor for fractures, which formed part of the health burden due to falls. Objectives To calculate (1) the global distribution of BMD, (2) its population attributable fraction (PAF) for fractures and subsequently for falls, and (3) the number of DALYs due to BMD. Methods A systematic review was performed seeking population-based studies in which BMD was measured by dual-energy X-ray absorptiometry at the femoral neck in people aged 50 years and over. Age- and sex-specific mean ± SD BMD values (g/cm2) were extracted from eligible studies. Comparative risk assessment methodology was used to calculate PAFs of BMD for fractures. The theoretical minimum risk exposure distribution was estimated as the age- and sex-specific 90th centile from the Third National Health and Nutrition Examination Survey (NHANES III). Relative risks of fractures were obtained from a previous meta-analysis. Hospital data were used to calculate the fraction of the health burden of falls that was due to fractures. Results Global deaths and DALYs attributable to low BMD increased from 103 000 and 3 125 000 in 1990 to 188 000 and 5 216 000 in 2010, respectively. The percentage of low BMD in the total global burden almost doubled from 1990 (0.12%) to 2010 (0.21%). Around one-third of falls-related deaths were attributable to low BMD. Conclusions Low BMD is responsible for a growing global health burden, only partially representative of the real burden of osteoporosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing numbers of preclinical and clinical studies are utilizing pDNA (plasmid DNA) as the vector. In addition, there has been a growing trend towards larger and larger doses of pDNA utilized in human trials. The growing demand on pDNA manufacture leads to pressure to make more in less time. A key intervention has been the use of monoliths as stationary phases in liquid chromatography. Monolithic stationary phases offer fast separation to pDNA owing to their large pore size, making pDNA in the size range from 100 nm to over 300 nm easily accessible. However, the convective transport mechanism of monoliths does not guarantee plasmid purity. The recovery of pure pDNA hinges on a proper balance in the properties of the adsorbent phase, the mobile phase and the feedstock. The effects of pH and ionic strength of binding buffer, temperature of feedstock, active group density and the pore size of the stationary phase were considered as avenues to improve the recovery and purity of pDNA using a methacrylate-based monolithic adsorbent and Escherichia coli DH5α-pUC19 clarified lysate as feedstock. pDNA recovery was found to be critically dependent on the pH and ionic strength of the mobile phase. Up to a maximum of approx. 92% recovery was obtained under optimum conditions of pH and ionic strength. Increasing the feedstock temperature to 80°C increased the purity of pDNA owing to the extra thermal stability associated with pDNA over contaminants such as proteins. Results from toxicological studies of the plasmid samples using endotoxin standard (E. coli 0.55:B5 lipopolysaccharide) show that endotoxin level decreases with increasing salt concentration. It was obvious that large quantities of pure pDNA can be obtained with minimal extra effort simply by optimizing process parameters and conditions for pDNA purification.