91 resultados para decomposition rank
Resumo:
Alkyl hydroperoxides (ROOH) are attributed a key role in the biochemical oxidation of lipids during oxidative stress.1 In this chemistry ROOH compounds, where the R groups are unsaturated fatty acids, are viewed as transient ntermediates which are readily degraded, due to the lability of the RO-OH bond, to yield potentially genotoxic aldehydes and ketones.2 Generally, the decomposition of alkyl hydroperoxides is thought to be mediated by radical abstraction or electron transfer processes usually involving enzymes, transition metals, or recently, Vitamin C.3 In this paper we present the first unambiguous experimental and computational evidence for base-mediated heterolytic decomposition of simple alkyl hydroperoxides by the mechanism outlined in Scheme 1.
Resumo:
The E-CO(2) elimination reactions of alkyl hydroperoxides proceed via abstraction of an (x-hydrogen by a base: X- + (RRHCOOH)-R-1-H-2 -> HX + (RRC)-R-1-C-2=O + HO-. Efficiencies and product distributions for the reactions of the hydroxide anion with methyl, ethyl, and tert-butyl hydroperoxides are studied in the gas phase. On the basis of experiments using three isotopic analogues, HO- + CH3OOH, HO- + CD3OOH, and H18O- + CH3OOH. the overall intrinsic reaction efficiency is determined to be 80% or greater. The E(CO)2 decomposition is facile for these methylperoxide reactions, and predominates over competing proton transfer at the hydroperoxide moiety. The CH3CH2OOH reaction displays a similar E(CO)2 reactivity, whereas proton transfer and the formation of HOO- are the exclusive pathways observed for (CH3)(3)COOH, which has no (x-hydrogen. All results are consistent with the E-CO(2) mechanism, transition state structure, and reaction energy diagrams calculated using the hybrid density functional B3LYP approach. Isotope labeling for HO- + CH3OOH also reveals some interaction between H2O and HO- within the E(CO)2 product complex [H2O center dot center dot center dot CH2=O center dot center dot center dot HO-]. There is little evidence, however. for the formation of the most exothermic products H2O + CH2(OH)O-, which would arise from nuclephilic condensation of CH2=O and HO-. The results suggest that the product dynamics are not totally statistical but are rather direct after the E-CO(2) transition state. The larger HO- + CH3CH2OOH system displays more statistical behavior during complex dissociation.
Resumo:
A series of styrene-butadiene rubber (SBR) nanocomposites filledwith different particle sized kaolinites are prepared via a latex blending method. The thermal stabilities of these clay polymer nanocomposites (CPN) are characterized by a range of techniques including thermogravimetry (TG), digital photos, scanning electron microscopy (SEM) and Raman spectroscopy. These CPN show some remarkable improvement in thermal stability compared to that of the pure SBR. With the increase of kaolinite particle size, the residual char content and the average activation energy of kaolinite SBR nanocomposites all decrease; the pyrolysis residues become porous; the crystal carbon in the pyrolysis residues decrease significantly from 58.23% to 44.41%. The above results prove that the increase of kaolinite particle size is not beneficial in improving the thermal stability of kaolinite SBR nanocomposites.
Resumo:
This study analyzes the management of air pollutant substance in Chinese industrial sectors from 1998 to 2009. Decomposition analysis applying the logarithmic mean divisia index is used to analyze changes in emissions of air pollutants with a focus on the following five factors: coal pollution intensity (CPI), end-of-pipe treatment (EOP), the energy mix (EM), productive efficiency change (EFF), and production scale changes (PSC). Three pollutants are the main focus of this study: sulfur dioxide (SO2), dust, and soot. The novelty of this paper is focusing on the impact of the elimination policy on air pollution management in China by type of industry using the scale merit effect for pollution abatement technology change. First, the increase in SO2 emissions from Chinese industrial sectors because of the increase in the production scale is demonstrated. However, the EOP equipment that induced this change and improvements in energy efficiency has prevented an increase in SO2 emissions that is commensurate with the increase in production. Second, soot emissions were successfully reduced and controlled in all industries except the steel industry between 1998 and 2009, even though the production scale expanded for these industries. This reduction was achieved through improvements in EOP technology and in energy efficiency. Dust emissions decreased by nearly 65% between 1998 and 2009 in the Chinese industrial sectors. This successful reduction in emissions was achieved by implementing EOP technology and pollution prevention activities during the production processes, especially in the cement industry. Finally, pollution prevention in the cement industry is shown to result from production technology development rather than scale merit. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This study analyzes toxic chemical substance management in three U.S. manufacturing sectors from 1991 to 2008. Decomposition analysis applying the logarithmic mean Divisia index is used to analyze changes in toxic chemical substance emissions by the following five factors: cleaner production, end-of-pipe treatment, transfer for further management, mixing of intermediate materials, and production scale. Based on our results, the chemical manufacturing sector reduced toxic chemical substance emissions mainly via end-of-pipe treatment. In the meantime, transfer for further management contributed to the reduction of toxic chemical substance emissions in the metal fabrication industry. This occurred because the environmental business market expanded in the 1990s, and the infrastructure for the recycling of metal and other wastes became more efficient. Cleaner production is the main contributor to toxic chemical reduction in the electrical product industry. This implies that the electrical product industry is successful in developing a more environmentally friendly product design and production process.
Resumo:
This study decomposed the determinants of environmental quality into scale, technique, and composition effects. We applied a semiparametric method of generalized additive models, which enabled us to use flexible functional forms and include several independent variables in the model. The differences in the technique effect were found to play a crucial role in reducing pollution. We found that the technique effect was sufficient to reduce sulfur dioxide emissions. On the other hand, its effect was not enough to reduce carbon dioxide (CO2) emissions and energy use, except for the case of CO2 emissions in high-income countries.
Resumo:
The thermal decomposition process of kaolinite–potassium acetate intercalation complex has been studied using simultaneous thermogravimetry coupled with Fourier-transform infrared spectroscopy and mass spectrometry (TG-FTIR-MS). The results showed that the thermal decomposition of the complex took place in four temperature ranges, namely 50–100, 260–320, 320–550, and 650–780 °C. The maximal mass losses rate for the thermal decomposition of the kaolinite–potassium acetate intercalation complex was observed at 81, 296, 378, 411, 486, and 733 °C, which was attributed to (a) loss of the adsorbed water, (b) thermal decomposition of surface-adsorbed potassium acetate (KAc), (c) the loss of the water coordinated to potassium acetate in the intercalated kaolinite, (d) the thermal decomposition of intercalated KAc in the interlayer of kaolinite and the removal of inner surface hydroxyls, (e) the loss of the inner hydroxyls, and (f) the thermal decomposition of carbonate derived from the decomposition of KAc. The thermal decomposition of intercalated potassium acetate started in the range 320–550 °C accompanied by the release of water, acetone, carbon dioxide, and acetic acid. The identification of pyrolysis fragment ions provided insight into the thermal decomposition mechanism. The results showed that the main decomposition fragment ions of the kaolinite–KAc intercalation complex were water, acetone, carbon dioxide, and acetic acid. TG-FTIR-MS was demonstrated to be a powerful tool for the investigation of kaolinite intercalation complexes. It delivers a detailed insight into the thermal decomposition processes of the kaolinite intercalation complexes characterized by mass loss and the evolved gases.
Resumo:
In an estuary, mixing and dispersion are the result of the combination of large scale advection and small scale turbulence which are both complex to estimate. A field study was conducted in a small sub-tropical estuary in which high frequency (50 Hz) turbulent data were recorded continuously for about 48 hours. A triple decomposition technique was introduced to isolate the contributions of tides, resonance and turbulence in the flow field. A striking feature of the data set was the slow fluctuations which exhibited large amplitudes up to 50% the tidal amplitude under neap tide conditions. The triple decomposition technique allowed a characterisation of broader temporal scales of high frequency fluctuation data sampled during a number of full tidal cycles.
Resumo:
The function of a protein can be partially determined by the information contained in its amino acid sequence. It can be assumed that proteins with similar amino acid sequences normally have closer functions. Hence analysing the similarity of proteins has become one of the most important areas of protein study. In this work, a layered comparison method is used to analyze the similarity of proteins. It is based on the empirical mode decomposition (EMD) method, and protein sequences are characterized by the intrinsic mode functions (IMFs). The similarity of proteins is studied with a new cross-correlation formula. It seems that the EMD method can be used to detect the functional relationship of two proteins. This kind of similarity method is a complement of traditional sequence similarity approaches which focus on the alignment of amino acids
Resumo:
Discounted Cumulative Gain (DCG) is a well-known ranking evaluation measure for models built with multiple relevance graded data. By handling tagging data used in recommendation systems as an ordinal relevance set of {negative,null,positive}, we propose to build a DCG based recommendation model. We present an efficient and novel learning-to-rank method by optimizing DCG for a recommendation model using the tagging data interpretation scheme. Evaluating the proposed method on real-world datasets, we demonstrate that the method is scalable and outperforms the benchmarking methods by generating a quality top-N item recommendation list.
Resumo:
To classify each stage for a progressing disease such as Alzheimer’s disease is a key issue for the disease prevention and treatment. In this study, we derived structural brain networks from diffusion-weighted MRI using whole-brain tractography since there is growing interest in relating connectivity measures to clinical, cognitive, and genetic data. Relatively little work has usedmachine learning to make inferences about variations in brain networks in the progression of the Alzheimer’s disease. Here we developed a framework to utilize generalized low rank approximations of matrices (GLRAM) and modified linear discrimination analysis for unsupervised feature learning and classification of connectivity matrices. We apply the methods to brain networks derived from DWI scans of 41 people with Alzheimer’s disease, 73 people with EMCI, 38 people with LMCI, 47 elderly healthy controls and 221 young healthy controls. Our results show that this new framework can significantly improve classification accuracy when combining multiple datasets; this suggests the value of using data beyond the classification task at hand to model variations in brain connectivity.
Resumo:
Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).
Resumo:
A smoothed rank-based procedure is developed for the accelerated failure time model to overcome computational issues. The proposed estimator is based on an EM-type procedure coupled with the induced smoothing. "The proposed iterative approach converges provided the initial value is based on a consistent estimator, and the limiting covariance matrix can be obtained from a sandwich-type formula. The consistency and asymptotic normality of the proposed estimator are also established. Extensive simulations show that the new estimator is not only computationally less demanding but also more reliable than the other existing estimators.