325 resultados para computer supported collaborative work
Resumo:
Identifying, modelling and documenting business processes usually requires the collaboration of many stakeholders that may be spread across companies in inter-organizational business settings. While there are many process modelling tools available, the support they provide for remote collaboration is still limited. This demonstration showcases a novel prototype application that implements collaborative virtual environment and augmented reality technologies to improve remote collaborative process modelling, with an aim to assisting common collaboration tasks by providing an increased sense of immersion in an intuitive shared work and task space. Our tool is easily deployed using open source software, and commodity hardware, and is expected to assist with saving money on travel costs for large scale process modelling projects covering national and international centres within an enterprise.
Resumo:
Students struggle with learning to program. In recent years, not only has there been a dramatic drop in the number of students enrolling in IT and Computer Science courses, but attrition from these courses continues to be significant. Introductory programming subjects traditionally have high failure rates and as they tend to be core to IT and Computer Science courses can be a road block for many students to their university studies. Is programming really that difficult — or are there other barriers to learning that have a serious and detrimental effect on student progression? In-class experiments were conducted in introductory programming units to confirm our hypothesis that that pair-programming would benefit students' learning to program. We investigated the social and cultural barriers to learning programming by questioning students' perceptions of confidence, difficulty and enjoyment of programming. The results of paired and non-paired students were compared to determine the effect of pair-programming on learning outcomes. Both the empirical and anecdotal results of our experiments strongly supported our hypothesis.
Resumo:
This thesis develops a detailed conceptual design method and a system software architecture defined with a parametric and generative evolutionary design system to support an integrated interdisciplinary building design approach. The research recognises the need to shift design efforts toward the earliest phases of the design process to support crucial design decisions that have a substantial cost implication on the overall project budget. The overall motivation of the research is to improve the quality of designs produced at the author's employer, the General Directorate of Major Works (GDMW) of the Saudi Arabian Armed Forces. GDMW produces many buildings that have standard requirements, across a wide range of environmental and social circumstances. A rapid means of customising designs for local circumstances would have significant benefits. The research considers the use of evolutionary genetic algorithms in the design process and the ability to generate and assess a wider range of potential design solutions than a human could manage. This wider ranging assessment, during the early stages of the design process, means that the generated solutions will be more appropriate for the defined design problem. The research work proposes a design method and system that promotes a collaborative relationship between human creativity and the computer capability. The tectonic design approach is adopted as a process oriented design that values the process of design as much as the product. The aim is to connect the evolutionary systems to performance assessment applications, which are used as prioritised fitness functions. This will produce design solutions that respond to their environmental and function requirements. This integrated, interdisciplinary approach to design will produce solutions through a design process that considers and balances the requirements of all aspects of the design. Since this thesis covers a wide area of research material, 'methodological pluralism' approach was used, incorporating both prescriptive and descriptive research methods. Multiple models of research were combined and the overall research was undertaken following three main stages, conceptualisation, developmental and evaluation. The first two stages lay the foundations for the specification of the proposed system where key aspects of the system that have not previously been proven in the literature, were implemented to test the feasibility of the system. As a result of combining the existing knowledge in the area with the newlyverified key aspects of the proposed system, this research can form the base for a future software development project. The evaluation stage, which includes building the prototype system to test and evaluate the system performance based on the criteria defined in the earlier stage, is not within the scope this thesis. The research results in a conceptual design method and a proposed system software architecture. The proposed system is called the 'Hierarchical Evolutionary Algorithmic Design (HEAD) System'. The HEAD system has shown to be feasible through the initial illustrative paper-based simulation. The HEAD system consists of the two main components - 'Design Schema' and the 'Synthesis Algorithms'. The HEAD system reflects the major research contribution in the way it is conceptualised, while secondary contributions are achieved within the system components. The design schema provides constraints on the generation of designs, thus enabling the designer to create a wide range of potential designs that can then be analysed for desirable characteristics. The design schema supports the digital representation of the human creativity of designers into a dynamic design framework that can be encoded and then executed through the use of evolutionary genetic algorithms. The design schema incorporates 2D and 3D geometry and graph theory for space layout planning and building formation using the Lowest Common Design Denominator (LCDD) of a parameterised 2D module and a 3D structural module. This provides a bridge between the standard adjacency requirements and the evolutionary system. The use of graphs as an input to the evolutionary algorithm supports the introduction of constraints in a way that is not supported by standard evolutionary techniques. The process of design synthesis is guided as a higher level description of the building that supports geometrical constraints. The Synthesis Algorithms component analyses designs at four levels, 'Room', 'Layout', 'Building' and 'Optimisation'. At each level multiple fitness functions are embedded into the genetic algorithm to target the specific requirements of the relevant decomposed part of the design problem. Decomposing the design problem to allow for the design requirements of each level to be dealt with separately and then reassembling them in a bottom up approach reduces the generation of non-viable solutions through constraining the options available at the next higher level. The iterative approach, in exploring the range of design solutions through modification of the design schema as the understanding of the design problem improves, assists in identifying conflicts in the design requirements. Additionally, the hierarchical set-up allows the embedding of multiple fitness functions into the genetic algorithm, each relevant to a specific level. This supports an integrated multi-level, multi-disciplinary approach. The HEAD system promotes a collaborative relationship between human creativity and the computer capability. The design schema component, as the input to the procedural algorithms, enables the encoding of certain aspects of the designer's subjective creativity. By focusing on finding solutions for the relevant sub-problems at the appropriate levels of detail, the hierarchical nature of the system assist in the design decision-making process.
Resumo:
A video detailing our new virtual world BPMN process modelling tool developed by Erik Poppe. Enables better situational awareness via use of remotely connected avatars and a shared 3D process diagram.
Resumo:
Securing IT infrastructures of our modern lives is a challenging task because of their increasing complexity, scale and agile nature. Monolithic approaches such as using stand-alone firewalls and IDS devices for protecting the perimeter cannot cope with complex malwares and multistep attacks. Collaborative security emerges as a promising approach. But, research results in collaborative security are not mature, yet, and they require continuous evaluation and testing. In this work, we present CIDE, a Collaborative Intrusion Detection Extension for the network security simulation platform ( NeSSi 2 ). Built-in functionalities include dynamic group formation based on node preferences, group-internal communication, group management and an approach for handling the infection process for malware-based attacks. The CIDE simulation environment provides functionalities for easy implementation of collaborating nodes in large-scale setups. We evaluate the group communication mechanism on the one hand and provide a case study and evaluate our collaborative security evaluation platform in a signature exchange scenario on the other.
Resumo:
A demo video showing the BPMVM prototype using several natural user interfaces, such as multi-touch input, full-body tracking and virtual reality.
Resumo:
Many industry peak and professional bodies advocate students undertake professional work placements as a key work integrated learning (WIL) experience in accredited university degree courses. However, mismatched expectations and gaps in the way industry partners (IPs) are supported during these work placements can place these high-stake alliances at risk. A review of models and strategies supporting industry partners indicates many are contingent on the continued efforts of well-networked individuals in both universities and IP organisations to make these connections work. It is argued that whilst these individuals are highly valued they often end up representing a whole course or industry perspective, not just their area of expertise. Sustainable partnership principles and practices with shared responsibility across stakeholder groups are needed instead. This paper provides an overview of work placement approaches in the disciplines of business, engineering and urban development at an Australian, metropolitan university. Employing action research and participatory focus group methodologies, it gathers and articulates recommendations from associated IPs on practical suggestions and strategies to improve relationships and the resultant quality of placements.
Resumo:
This paper examines collaborative researcher-practitioner knowledge work around assessment data in culturally diverse, low- socioeconomic school communities in Queensland, Australia. Specifically, the paper draws on interview accounts about the work of a bridging knowledge flows between a local university and a cluster of schools. We draw on Bernstein’s (2000) concept of recontextualisation to explore the processes of knowledge mediation in dialogues around student assessment data to design instructional innovations. We argue that critical policy studies need to explore the complex ways in which neoliberal education policies are enacted in local sites. Moreover, we suggest that an analysis of collaborative knowledge work designed to improve student learning outcomes in low-socioeconomic school communities necessitates attention to the principles regulating knowledge flows across boundaries. In addition, it necessitates attention to the ways in which mediators navigate dilemmatic spaces, anxieties and affects/feelings in order to generate innovative learning designs in the current global context of high-stakes national testing and accountability regimes.
Resumo:
This research proposes the development of interfaces to support collaborative, community-driven inquiry into data, which we refer to as Participatory Data Analytics. Since the investigation is led by local communities, it is not possible to anticipate which data will be relevant and what questions are going to be asked. Therefore, users have to be able to construct and tailor visualisations to their own needs. The poster presents early work towards defining a suitable compositional model, which will allow users to mix, match, and manipulate data sets to obtain visual representations with little-to-no programming knowledge. Following a user-centred design process, we are subsequently planning to identify appropriate interaction techniques and metaphors for generating such visual specifications on wall-sized, multi-touch displays.
Resumo:
In the HealthMap project for People With HIV, (PWHIV) designers employed a collaborative rapid ‘persona-building' workshop with health researchers to develop patient personas that embodied patient-centred design goals and contextual awareness from a variety of qualitative and quantitative data. On reflection, this collaborative rapid workshop was a process for drawing together the divergent user research insights and expertise of stakeholders into focus for a chronic disease self-management design. This paper discusses, (i) an analysis of the transcript of the workshop and, (ii) interviews with five practising senior designers, in order to reflect on how the persona-building process was enacted and its role in the HealthMap design evolution. The collaborative rapid persona-building methodology supported: embedding user research insights, eliciting domain expertise, introducing design thinking, facilitating stakeholder collaboration and defining early design requirements. The contribution of this paper is to model the process of collaborative rapid persona-building and to introduce the collaborative rapid persona-building framework as a method to generate design priorities from domain expertise and user research data.
Resumo:
Understandings of male sex workers (MSWs) shift with technological, conceptual, and social changes. Research has historically constructed MSWs as psychologically unstable, desperate, or destitute victims and their clients as socially deviant perverts. These perceptions, however, are no longer supported by contemporary research and changing societal perceptions of the sex industry, challenging how we understand and describe “escorts.” The changing understandings of sexuality and the increasing power of the Internet are both important forces behind recent changes in the structure and organization of MSWs. The growth in the visibility and reach of escorts has created opportunities to form an occupational account of MSWs that better accounts for the dynamic and diverse nature of the MSW experience in the early 21st century. Recent changes in the structure and organization of male sex work have provided visibility to the increasingly diverse geographical distribution of MSW, the commodification of race and racialized desire, new populations of heterosexual men and women as clients, and the successful dissemination of safer sexual messages to MSWs through online channels. This article provides a broad overview of the literature on MSWs, concentrating its focus on studies that have emerged over the past 20 years and identifying areas for future research.
Resumo:
As technological capabilities for capturing, aggregating, and processing large quantities of data continue to improve, the question becomes how to effectively utilise these resources. Whenever automatic methods fail, it is necessary to rely on human background knowledge, intuition, and deliberation. This creates demand for data exploration interfaces that support the analytical process, allowing users to absorb and derive knowledge from data. Such interfaces have historically been designed for experts. However, existing research has shown promise in involving a broader range of users that act as citizen scientists, placing high demands in terms of usability. Visualisation is one of the most effective analytical tools for humans to process abstract information. Our research focuses on the development of interfaces to support collaborative, community-led inquiry into data, which we refer to as Participatory Data Analytics. The development of data exploration interfaces to support independent investigations by local communities around topics of their interest presents a unique set of challenges, which we discuss in this paper. We present our preliminary work towards suitable high-level abstractions and interaction concepts to allow users to construct and tailor visualisations to their own needs.
Resumo:
Analyzing and redesigning business processes is a complex task, which requires the collaboration of multiple actors. Current approaches focus on collaborative modeling workshops where process stakeholders verbally contribute their perspective on a process while modeling experts translate their contributions and integrate them into a model using traditional input devices. Limiting participants to verbal contributions not only affects the outcome of collaboration but also collaboration itself. We created CubeBPM – a system that allows groups of actors to interact with process models through a touch based interface on a large interactive touch display wall. We are currently in the process of conducting a study that aims at assessing the impact of CubeBPM on collaboration and modeling performance. Initial results presented in this paper indicate that the setting helped participants to become more active in collaboration.
Resumo:
Objectives This efficacy study assessed the added impact real time computer prompts had on a participatory approach to reduce occupational sedentary exposure and increase physical activity. Design Quasi-experimental. Methods 57 Australian office workers (mean [SD]; age = 47 [11] years; BMI = 28 [5] kg/m2; 46 men) generated a menu of 20 occupational ‘sit less and move more’ strategies through participatory workshops, and were then tasked with implementing strategies for five months (July–November 2014). During implementation, a sub-sample of workers (n = 24) used a chair sensor/software package (Sitting Pad) that gave real time prompts to interrupt desk sitting. Baseline and intervention sedentary behaviour and physical activity (GENEActiv accelerometer; mean work time percentages), and minutes spent sitting at desks (Sitting Pad; mean total time and longest bout) were compared between non-prompt and prompt workers using a two-way ANOVA. Results Workers spent close to three quarters of their work time sedentary, mostly sitting at desks (mean [SD]; total desk sitting time = 371 [71] min/day; longest bout spent desk sitting = 104 [43] min/day). Intervention effects were four times greater in workers who used real time computer prompts (8% decrease in work time sedentary behaviour and increase in light intensity physical activity; p < 0.01). Respective mean differences between baseline and intervention total time spent sitting at desks, and the longest bout spent desk sitting, were 23 and 32 min/day lower in prompt than in non-prompt workers (p < 0.01). Conclusions In this sample of office workers, real time computer prompts facilitated the impact of a participatory approach on reductions in occupational sedentary exposure, and increases in physical activity.
Resumo:
The international trend towards an increasingly standards-based approach to higher education and the resultant focus on the assurance of learning in tertiary programs have generated a strong emphasis on the assessment of outcomes across the higher education sector. In legal education, curriculum reform is highly prevalent internationally as a result of various reviews of legal education. As legal education focuses more on the attainment of a broader set of outcomes encompassing soft skills, capabilities and attributes, more authentic assessment will need to be developed appropriate to this new environment, meaning that modes of assessment with strong application in real-life settings should be preferred.