111 resultados para causal discovery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an overview of NTCIR-10 Cross-lingual Link Discovery (CrossLink-2) task. For the task, we continued using the evaluation framework developed for the NTCIR-9 CrossLink-1 task. Overall, recommended links were evaluated at two levels (file-to-file and anchor-to-file); and system performance was evaluated with metrics: LMAP, R-Prec and P@N.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To enhance the therapeutic efficacy and reduce the adverse effects of traditional Chinese medicine, practitioners often prescribe combinations of plant species and/or minerals, called formulae. Unfortunately, the working mechanisms of most of these compounds are difficult to determine and thus remain unknown. In an attempt to address the benefits of formulae based on current biomedical approaches, we analyzed the components of Yinchenhao Tang, a classical formula that has been shown to be clinically effective for treating hepatic injury syndrome. The three principal components of Yinchenhao Tang are Artemisia annua L., Gardenia jasminoids Ellis, and Rheum Palmatum L., whose major active ingredients are 6,7-dimethylesculetin (D), geniposide (G), and rhein (R), respectively. To determine the mechanisms underlying the efficacy of this formula, we conducted a systematic analysis of the therapeutic effects of the DGR compound using immunohistochemistry, biochemistry, metabolomics, and proteomics. Here, we report that the DGR combination exerts a more robust therapeutic effect than any one or two of the three individual compounds by hitting multiple targets in a rat model of hepatic injury. Thus, DGR synergistically causes intensified dynamic changes in metabolic biomarkers, regulates molecular networks through target proteins, has a synergistic/additive effect, and activates both intrinsic and extrinsic pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10−11, OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is a study for automatic discovery of text features for describing user information needs. It presents an innovative data-mining approach that discovers useful knowledge from both relevance and non-relevance feedback information. The proposed approach can largely reduce noises in discovered patterns and significantly improve the performance of text mining systems. This study provides a promising method for the study of Data Mining and Web Intelligence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Presently organisations engage in what is termed as Global Business Transformation Projects [GBTPs], for consolidating, innovating, transforming and restructuring their processes and business strategies while undergoing fundamental change. Culture plays an important role in global business transformation projects as these involve people of different cultural backgrounds and span across countries, industries and disciplinary boundaries. Nevertheless, there is scant empirical research on how culture is conceptualised beyond national and organisational cultures but also on how culture is to be taken into account and dealt with within global business transformation projects. This research is situated in a business context and discovers a theory that aids in describing and dealing with culture. It draws on the lived experiences of thirty-two senior management practitioners, reporting on more than sixty-one global business transformation projects in which they were actively involved. The research method used is a qualitative and interpretive one and applies a grounded theory approach, with rich data generated through interviews. In addition, vignettes were developed to illustrate the derived theoretical models. The findings from this study contribute to knowledge in multiple ways. First, it provides a holistic account of global business transformation projects that describe the construct of culture by the elements of culture types, cultural differences and cultural diversity. A typology of culture types has been developed which enlarges the view of culture beyond national and organisational culture including an industry culture, professional service firm culture and 'theme' culture. The amalgamation of the culture types instantiated in a global business transformation project compromises its project culture. Second, the empirically grounded process for managing culture in global business transformation projects integrates the stages of recognition, understanding and management as well as the enablement providing a roadmap for dealing with culture in global business transformation projects. Third, this study identified contextual variables to global business transformation projects, which provide the means of describing the environment global business transformation projects are situated, influence the construct of culture and inform the process for managing culture. Fourth, the contribution to the research method is the positioning of interview research as a strategy for data generation and the detailed documentation applying grounded theory to discover theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the efficiency of a number of popular corpus-based distributional models in performing discovery on very large document sets, including online collections. Literature-based discovery is the process of identifying previously unknown connections from text, often published literature, that could lead to the development of new techniques or technologies. Literature-based discovery has attracted growing research interest ever since Swanson's serendipitous discovery of the therapeutic effects of fish oil on Raynaud's disease in 1986. The successful application of distributional models in automating the identification of indirect associations underpinning literature-based discovery has been heavily demonstrated in the medical domain. However, we wish to investigate the computational complexity of distributional models for literature-based discovery on much larger document collections, as they may provide computationally tractable solutions to tasks including, predicting future disruptive innovations. In this paper we perform a computational complexity analysis on four successful corpus-based distributional models to evaluate their fit for such tasks. Our results indicate that corpus-based distributional models that store their representations in fixed dimensions provide superior efficiency on literature-based discovery tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vivo small molecules as necessary intermediates are involved in numerous critical metabolic pathways and biological processes associated with many essential biological functions and events. There is growing evidence that MS-based metabolomics is emerging as a powerful tool to facilitate the discovery of functional small molecules that can better our understanding of development, infection, nutrition, disease, toxicity, drug therapeutics, gene modifications and host-pathogen interaction from metabolic perspectives. However, further progress must still be made in MS-based metabolomics because of the shortcomings in the current technologies and knowledge. This technique-driven review aims to explore the discovery of in vivo functional small molecules facilitated by MS-based metabolomics and to highlight the analytic capabilities and promising applications of this discovery strategy. Moreover, the biological significance of the discovery of in vivo functional small molecules with different biological contexts is also interrogated at a metabolic perspective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focused on the alternative futures of terrorism, this study engages with the different levels of terrorism knowledge to identify and challenge the restrictive narratives that define terrorism: that "society must be defended" from the "constant and evolving terrorist threat". Using Causal Layered Analysis to deconstruct and reconstruct strategies, alternative scenarios emerge. These alternative futures are depicted collectively as a maze, highlighting the prospect of navigating towards preferred and even shared terrorism futures, once these are supported by new and inclusive metaphors and stakeholder engagement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guaranteeing the quality of extracted features that describe relevant knowledge to users or topics is a challenge because of the large number of extracted features. Most popular existing term-based feature selection methods suffer from noisy feature extraction, which is irrelevant to the user needs (noisy). One popular method is to extract phrases or n-grams to describe the relevant knowledge. However, extracted n-grams and phrases usually contain a lot of noise. This paper proposes a method for reducing the noise in n-grams. The method first extracts more specific features (terms) to remove noisy features. The method then uses an extended random set to accurately weight n-grams based on their distribution in the documents and their terms distribution in n-grams. The proposed approach not only reduces the number of extracted n-grams but also improves the performance. The experimental results on Reuters Corpus Volume 1 (RCV1) data collection and TREC topics show that the proposed method significantly outperforms the state-of-art methods underpinned by Okapi BM25, tf*idf and Rocchio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Event report on the Open Access and Research 2013 conference which focused on recent developments and the strategic advantages they bring to the research sector.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated process discovery techniques aim at extracting process models from information system logs. Existing techniques in this space are effective when applied to relatively small or regular logs, but generate spaghetti-like and sometimes inaccurate models when confronted to logs with high variability. In previous work, trace clustering has been applied in an attempt to reduce the size and complexity of automatically discovered process models. The idea is to split the log into clusters and to discover one model per cluster. This leads to a collection of process models – each one representing a variant of the business process – as opposed to an all-encompassing model. Still, models produced in this way may exhibit unacceptably high complexity and low fitness. In this setting, this paper presents a two-way divide-and-conquer process discovery technique, wherein the discovered process models are split on the one hand by variants and on the other hand hierarchically using subprocess extraction. Splitting is performed in a controlled manner in order to achieve user-defined complexity or fitness thresholds. Experiments on real-life logs show that the technique produces collections of models substantially smaller than those extracted by applying existing trace clustering techniques, while allowing the user to control the fitness of the resulting models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More and more traditional manufacturing companies form or join inter-organizational networks to bundle their physical products with related services to offer superior value propositions to their customers. Some of these product-related services can be digitized completely and thus fully delivered electronically. Other services require the physical integration of external factors, but can still be coordinated electronically. In both cases companies and consumers face the problem of discovering appropriate product-related service offerings in the network or market. Based on ideas from the web service discovery discipline we propose a meet-in-the-middle approach between heavy-weight semantic technologies and simple boolean search to address this issue. Our approach is able to consider semantic relations in service descriptions and queries and thus delivers better results than syntax-based search. However – unlike most semantic approaches – it does not require the use of any formal language for semantic markup and thus requires less resources and skills for both service providers and consumers. To fully realize the potentials of the proposed approach a domain ontology is needed. In this research-in-progress paper we construct such an ontology for the domain of product-service bundles through analysis and synthesis of related work on service description. This will serve as an anchor for future research to iteratively improve and evaluate the ontology through collaborative design efforts and practical application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of behavioural consistency is an important aspect of software engineering. In process and service management, consistency verification of behavioural models has manifold applications. For instance, a business process model used as system specification and a corresponding workflow model used as implementation have to be consistent. Another example would be the analysis to what degree a process log of executed business operations is consistent with the corresponding normative process model. Typically, existing notions of behaviour equivalence, such as bisimulation and trace equivalence, are applied as consistency notions. Still, these notions are exponential in computation and yield a Boolean result. In many cases, however, a quantification of behavioural deviation is needed along with concepts to isolate the source of deviation. In this article, we propose causal behavioural profiles as the basis for a consistency notion. These profiles capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities of a process model. Consistency based on these profiles is weaker than trace equivalence, but can be computed efficiently for a broad class of models. In this article, we introduce techniques for the computation of causal behavioural profiles using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S- or T-nets. We also elaborate on the findings of applying our technique to three industry model collections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identification of behavioural contradictions is an important aspect of software engineering, in particular for checking the consistency between a business process model used as system specification and a corresponding workflow model used as implementation. In this paper, we propose causal behavioural profiles as the basis for a consistency notion, which capture essential behavioural information, such as order, exclusiveness, and causality between pairs of activities. Existing notions of behavioural equivalence, such as bisimulation and trace equivalence, might also be applied as consistency notions. Still, they are exponential in computation. Our novel concept of causal behavioural profiles provides a weaker behavioural consistency notion that can be computed efficiently using structural decomposition techniques for sound free-choice workflow systems if unstructured net fragments are acyclic or can be traced back to S- or T-nets.