178 resultados para candidate features
Resumo:
Local image feature extractors that select local maxima of the determinant of Hessian function have been shown to perform well and are widely used. This paper introduces the negative local minima of the determinant of Hessian function for local feature extraction. The properties and scale-space behaviour of these features are examined and found to be desirable for feature extraction. It is shown how this new feature type can be implemented along with the existing local maxima approach at negligible extra processing cost. Applications to affine covariant feature extraction and sub-pixel precise corner extraction are demonstrated. Experimental results indicate that the new corner detector is more robust to image blur and noise than existing methods. It is also accurate for a broader range of corner geometries. An affine covariant feature extractor is implemented by combining the minima of the determinant of Hessian with existing scale and shape adaptation methods. This extractor can be implemented along side the existing Hessian maxima extractor simply by finding both minima and maxima during the initial extraction stage. The minima features increase the number of correspondences by two to four fold. The additional minima features are very distinct from the maxima features in descriptor space and do not make the matching process more ambiguous.
Resumo:
In this paper we present a novel algorithm for localization during navigation that performs matching over local image sequences. Instead of calculating the single location most likely to correspond to a current visual scene, the approach finds candidate matching locations within every section (subroute) of all learned routes. Through this approach, we reduce the demands upon the image processing front-end, requiring it to only be able to correctly pick the best matching image from within a short local image sequence, rather than globally. We applied this algorithm to a challenging downhill mountainbiking visual dataset where there was significant perceptual or environment change between repeated traverses of the environment, and compared performance to applying the feature-based algorithm FAB-MAP. The results demonstrate the potential for localization using visual sequences, even when there are no visual features that can be reliably detected.
Resumo:
In this paper we present a novel algorithm for localization during navigation that performs matching over local image sequences. Instead of calculating the single location most likely to correspond to a current visual scene, the approach finds candidate matching locations within every section (subroute) of all learned routes. Through this approach, we reduce the demands upon the image processing front-end, requiring it to only be able to correctly pick the best matching image from within a short local image sequence, rather than globally. We applied this algorithm to a challenging downhill mountain biking visual dataset where there was significant perceptual or environment change between repeated traverses of the environment, and compared performance to applying the feature-based algorithm FAB-MAP. The results demonstrate the potential for localization using visual sequences, even when there are no visual features that can be reliably detected.
Resumo:
This paper presents a method for automatic terrain classification, using a cheap monocular camera in conjunction with a robot’s stall sensor. A first step is to have the robot generate a training set of labelled images. Several techniques are then evaluated for preprocessing the images, reducing their dimensionality, and building a classifier. Finally, the classifier is implemented and used online by an indoor robot. Results are presented, demonstrating an increased level of autonomy.
The association between objectively measured neighborhood features and walking in middle-aged adults
Resumo:
Purpose: To explore the role of the neighborhood environment in supporting walking Design: Cross sectional study of 10,286 residents of 200 neighborhoods. Participants were selected using a stratified two-stage cluster design. Data were collected by mail survey (68.5% response rate). Setting: The Brisbane City Local Government Area, Australia, 2007. Subjects: Brisbane residents aged 40 to 65 years. Measures Environmental: street connectivity, residential density, hilliness, tree coverage, bikeways, and street lights within a one kilometer circular buffer from each resident’s home; and network distance to nearest river or coast, public transport, shop, and park. Walking: minutes in the previous week categorized as < 30 minutes, ≥ 30 < 90 minutes, ≥ 90 < 150 minutes, ≥ 150 < 300 minutes, and ≥ 300 minutes. Analysis: The association between each neighborhood characteristic and walking was examined using multilevel multinomial logistic regression and the model parameters were estimated using Markov chain Monte Carlo simulation. Results: After adjustment for individual factors, the likelihood of walking for more than 300 minutes (relative to <30 minutes) was highest in areas with the most connectivity (OR=1.93, 99% CI 1.32-2.80), the greatest residential density (OR=1.47, 99% CI 1.02-2.12), the least tree coverage (OR=1.69, 99% CI 1.13-2.51), the most bikeways (OR=1.60, 99% CI 1.16-2.21), and the most street lights (OR=1.50, 99% CI 1.07-2.11). The likelihood of walking for more than 300 minutes was also higher among those who lived closest to a river or the coast (OR=2.06, 99% CI 1.41-3.02). Conclusion: The likelihood of meeting (and exceeding) physical activity recommendations on the basis of walking was higher in neighborhoods with greater street connectivity and residential density, more street lights and bikeways, closer proximity to waterways, and less tree coverage. Interventions targeting these neighborhood characteristics may lead to improved environmental quality as well as lower rates of overweight and obesity and associated chromic disease.
Resumo:
In cross-organizational, distributed environments, Business Process Management requires collaborative technologies to facilitate the process of discovering, modeling, and improving business processes across geographical and organizational boundaries. This paper provides a comprehensive understanding of collaborative business process modeling that is based on a review of literature and a case study of three selected modelling tools. The application of the framework reveals that current process modeling tools consider different perspectives on collaboration, and that the included features are orthogonal. This paper informs practitioners about the state of the art in tool support for collaborative process modelling. It also informs vendors about opportunities to enhance the technology support. For research, our paper paper informs social aspects of BPM technology through its explicit focus on the collaboration of BPM stakeholders in the process of distributed modeling.
Resumo:
Affine covariant local image features are a powerful tool for many applications, including matching and calibrating wide baseline images. Local feature extractors that use a saliency map to locate features require adaptation processes in order to extract affine covariant features. The most effective extractors make use of the second moment matrix (SMM) to iteratively estimate the affine shape of local image regions. This paper shows that the Hessian matrix can be used to estimate local affine shape in a similar fashion to the SMM. The Hessian matrix requires significantly less computation effort than the SMM, allowing more efficient affine adaptation. Experimental results indicate that using the Hessian matrix in conjunction with a feature extractor that selects features in regions with high second order gradients delivers equivalent quality correspondences in less than 17% of the processing time, compared to the same extractor using the SMM.
Resumo:
The quality of discovered features in relevance feedback (RF) is the key issue for effective search query. Most existing feedback methods do not carefully address the issue of selecting features for noise reduction. As a result, extracted noisy features can easily contribute to undesirable effectiveness. In this paper, we propose a novel feature extraction method for query formulation. This method first extract term association patterns in RF as knowledge for feature extraction. Negative RF is then used to improve the quality of the discovered knowledge. A novel information filtering (IF) model is developed to evaluate the proposed method. The experimental results conducted on Reuters Corpus Volume 1 and TREC topics confirm that the proposed model achieved encouraging performance compared to state-of-the-art IF models.
In the pursuit of effective affective computing : the relationship between features and registration
Resumo:
For facial expression recognition systems to be applicable in the real world, they need to be able to detect and track a previously unseen person's face and its facial movements accurately in realistic environments. A highly plausible solution involves performing a "dense" form of alignment, where 60-70 fiducial facial points are tracked with high accuracy. The problem is that, in practice, this type of dense alignment had so far been impossible to achieve in a generic sense, mainly due to poor reliability and robustness. Instead, many expression detection methods have opted for a "coarse" form of face alignment, followed by an application of a biologically inspired appearance descriptor such as the histogram of oriented gradients or Gabor magnitudes. Encouragingly, recent advances to a number of dense alignment algorithms have demonstrated both high reliability and accuracy for unseen subjects [e.g., constrained local models (CLMs)]. This begs the question: Aside from countering against illumination variation, what do these appearance descriptors do that standard pixel representations do not? In this paper, we show that, when close to perfect alignment is obtained, there is no real benefit in employing these different appearance-based representations (under consistent illumination conditions). In fact, when misalignment does occur, we show that these appearance descriptors do work well by encoding robustness to alignment error. For this work, we compared two popular methods for dense alignment-subject-dependent active appearance models versus subject-independent CLMs-on the task of action-unit detection. These comparisons were conducted through a battery of experiments across various publicly available data sets (i.e., CK+, Pain, M3, and GEMEP-FERA). We also report our performance in the recent 2011 Facial Expression Recognition and Analysis Challenge for the subject-independent task.
Resumo:
For many years, computer vision has lured researchers with promises of a low-cost, passive, lightweight and information-rich sensor suitable for navigation purposes. The prime difficulty in vision-based navigation is that the navigation solution will continually drift with time unless external information is available, whether it be cues from the appearance of the scene, a map of features (whether built online or known a priori), or from an externally-referenced sensor. It is not merely position that is of interest in the navigation problem. Attitude (i.e. the angular orientation of a body with respect to a reference frame) is integral to a visionbased navigation solution and is often of interest in its own right (e.g. flight control). This thesis examines vision-based attitude estimation in an aerospace environment, and two methods are proposed for constraining drift in the attitude solution; one through a novel integration of optical flow and the detection of the sky horizon, and the other through a loosely-coupled integration of Visual Odometry and GPS position measurements. In the first method, roll angle, pitch angle and the three aircraft body rates are recovered though a novel method of tracking the horizon over time and integrating the horizonderived attitude information with optical flow. An image processing front-end is used to select several candidate lines in a image that may or may not correspond to the true horizon, and the optical flow is calculated for each candidate line. Using an Extended Kalman Filter (EKF), the previously estimated aircraft state is propagated using a motion model and a candidate horizon line is associated using a statistical test based on the optical flow measurements and location of the horizon in the image. Once associated, the selected horizon line, along with the associated optical flow, is used as a measurement to the EKF. To evaluate the accuracy of the algorithm, two flights were conducted, one using a highly dynamic Uninhabited Airborne Vehicle (UAV) in clear flight conditions and the other in a human-piloted Cessna 172 in conditions where the horizon was partially obscured by terrain, haze and smoke. The UAV flight resulted in pitch and roll error standard deviations of 0.42° and 0.71° respectively when compared with a truth attitude source. The Cessna 172 flight resulted in pitch and roll error standard deviations of 1.79° and 1.75° respectively. In the second method for estimating attitude, a novel integrated GPS/Visual Odometry (GPS/VO) navigation filter is proposed, using a structure similar to a classic looselycoupled GPS/INS error-state navigation filter. Under such an arrangement, the error dynamics of the system are derived and a Kalman Filter is developed for estimating the errors in position and attitude. Through similar analysis to the GPS/INS problem, it is shown that the proposed filter is capable of recovering the complete attitude (i.e. pitch, roll and yaw) of the platform when subjected to acceleration not parallel to velocity for both the monocular and stereo variants of the filter. Furthermore, it is shown that under general straight line motion (e.g. constant velocity), only the component of attitude in the direction of motion is unobservable. Numerical simulations are performed to demonstrate the observability properties of the GPS/VO filter in both the monocular and stereo camera configurations. Furthermore, the proposed filter is tested on imagery collected using a Cessna 172 to demonstrate the observability properties on real-world data. The proposed GPS/VO filter does not require additional restrictions or assumptions such as platform-specific dynamics, map-matching, feature-tracking, visual loop-closing, gravity vector or additional sensors such as an IMU or magnetic compass. Since no platformspecific dynamics are required, the proposed filter is not limited to the aerospace domain and has the potential to be deployed in other platforms such as ground robots or mobile phones.
Resumo:
Mutations in multiple oncogenes including KRAS, CTNNB1, PIK3CA and FGFR2 have been identified in endometrial cancer. The aim of this study was to provide insight into the clinicopathological features associated with patterns of mutation in these genes, a necessary step in planning targeted therapies for endometrial cancer. 466 endometrioid endometrial tumors were tested for mutations in FGFR2, KRAS, CTNNB1, and PIK3CA. The relationships between mutation status, tumor microsatellite instability (MSI) and clinicopathological features including overall survival (OS) and disease-free survival (DFS) were evaluated using Kaplan-Meier survival analysis and Cox proportional hazard models. Mutations were identified in FGFR2 (48/466); KRAS (87/464); CTNNB1 (88/454) and PIK3CA (104/464). KRAS and FGFR2 mutations were significantly more common, and CTNNB1 mutations less common, in MSI positive tumors. KRAS and FGFR2 occurred in a near mutually exclusive pattern (p = 0.05) and, surprisingly, mutations in KRAS and CTNNB1 also occurred in a near mutually exclusive pattern (p = 0.0002). Multivariate analysis revealed that mutation in KRAS and FGFR2 showed a trend (p = 0.06) towards longer and shorter DFS, respectively. In the 386 patients with early stage disease (stage I and II), FGFR2 mutation was significantly associated with shorter DFS (HR = 3.24; 95% confidence interval, CI, 1.35-7.77; p = 0.008) and OS (HR = 2.00; 95% CI 1.09-3.65; p = 0.025) and KRAS was associated with longer DFS (HR = 0.23; 95% CI 0.05-0.97; p = 0.045). In conclusion, although KRAS and FGFR2 mutations share similar activation of the MAPK pathway, our data suggest very different roles in tumor biology. This has implications for the implementation of anti-FGFR or anti-MEK biologic therapies.
Resumo:
In this article we report on data analysed from a student project about attitudes to school and student perception of engagement and disengagement. The data were collected by students in an Australian study that employed the Young People as Researchers Model. Middle years students devised and administered a questionnaire to students in grade eight, nine and ten at a secondary school in Australia. A total of 239 students completed the questionnaire. The students completed the initial analysis which was followed by a more detailed analysis by the authors of this paper. The findings support the work of American, British and Australian researchers about the factors that influence engagement and disengagement from schooling. The reported outcomes from the student work and the secondary analysis indicate that students do have the capacity to undertake valid and meaningful research and can make informed contributions to school improvement and student engagement.
Resumo:
Objective The spondylarthritides (SpA), including ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis, and arthritis associated with inflammatory bowel disease, cause chronic inflammation of the large peripheral and axial joints, eyes, skin, ileum, and colon. Genetic studies reveal common candidate genes for AS, PsA, and Crohn's disease, including IL23R, IL12B, STAT3, and CARD9, all of which are associated with interleukin-23 (IL-23) signaling downstream of the dectin 1 β-glucan receptor. In autoimmune-prone SKG mice with mutated ZAP-70, which attenuates T cell receptor signaling and increases the autoreactivity of T cells in the peripheral repertoire, IL-17–dependent inflammatory arthritis developed after dectin 1–mediated fungal infection. This study was undertaken to determine whether SKG mice injected with 1,3-β-glucan (curdlan) develop evidence of SpA, and the relationship of innate and adaptive autoimmunity to this process. Methods SKG mice and control BALB/c mice were injected once with curdlan or mannan. Arthritis was scored weekly, and organs were assessed for pathologic features. Anti–IL-23 monoclonal antibodies were injected into curdlan-treated SKG mice. CD4+ T cells were transferred from curdlan-treated mice to SCID mice, and sera were analyzed for autoantibodies. Results After systemic injection of curdlan, SKG mice developed enthesitis, wrist, ankle, and sacroiliac joint arthritis, dactylitis, plantar fasciitis, vertebral inflammation, ileitis resembling Crohn's disease, and unilateral uveitis. Mannan triggered spondylitis and arthritis. Arthritis and spondylitis were T cell– and IL-23–dependent and were transferable to SCID recipients with CD4+ T cells. SpA was associated with collagen- and proteoglycan-specific autoantibodies. Conclusion Our findings indicate that the SKG ZAP-70W163C mutation predisposes BALB/c mice to SpA, resulting from innate and adaptive autoimmunity, after systemic β-glucan or mannan exposure.