72 resultados para Thiophene adsorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous adsorption of 1,8,15,22-tetraaminophthalocyanatocobalt(II) (4α-CoIITAPc) on glassy carbon (GC) electrode leads to the formation of a stable self-assembled monolayer (SAM). Since the SAM of 4α-CoIITAPc is redox active, its adsorption on GC electrode was followed by cyclic voltammetry. SAM of 4α-CoIITAPc on GC electrode shows two pairs of well-defined redox peaks corresponding to CoIII/CoII and CoIIIPc−1/CoIIIPc−2. The surface coverage (Γ) value, calculated by integrating the charge under CoII oxidation, was used to study the adsorption thermodynamics and kinetics of 4α-CoIITAPc on GC surface. Cyclic voltammetric studies show that the adsorption of 4α-CoIITAPc on GC electrode has reached the saturation coverage (Γs) within 3 h. The Γs value for the SAM of 4α-CoIITAPc on GC electrode was found to be 2.37 × 10−10 mol cm−2. Gibbs free energy (ΔGads) and adsorption rate constant (kad) for the adsorption of 4α-CoIITAPc on GC surface were found to be −16.76 kJ mol−1 and 7.1 M−1 s−1, respectively. The possible mechanism for the self-assembly of 4α-CoIITAPc on GC surface is through the addition of nucleophilic amines to the olefinic bond on the GC surface in addition to a meager contribution from π stacking. The contribution of π stacking was confirmed from the adsorption of unsubstituted phthalocyanatocobalt(II) (CoPc) on GC electrode. Raman spectra for the SAM of 4α-CoIITAPc on carbon surface shows strong stretching and breathing bands of Pc macrocycle, pyrrole ring and isoindole ring. Raman and CV studies suggest that 4α-CoIITAPc is adopting nearly a flat orientation or little bit tilted orientation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study investigated the adsorption and bioavailability characteristics of traffic generated metals common to urban land uses, in road deposited solids particles. To validate the outcomes derived from the analysis of field samples, adsorption and desorption experiments were undertaken. The analysis of field samples revealed that metals are selectively adsorbed to different charge sites on solids. Zinc, copper, lead and nickel are adsorbed preferentially to oxides of manganese, iron and aluminium. Lead is adsorbed to organic matter through chemisorption. Cadmium and chromium form weak bonding through cation exchange with most of the particle sizes. Adsorption and desorption experiments revealed that at high metal concentrations, chromium, copper and lead form relatively strong bonds with solids particles while zinc is adsorbed through cation exchange with high likelihood of being released back into solution. Outcomes from this study provide specific guidance for the removal of metals from stormwater based on solids removal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protein adsorption at solid-liquid interfaces is critical to many applications, including biomaterials, protein microarrays and lab-on-a-chip devices. Despite this general interest, and a large amount of research in the last half a century, protein adsorption cannot be predicted with an engineering level, design-orientated accuracy. Here we describe a Biomolecular Adsorption Database (BAD), freely available online, which archives the published protein adsorption data. Piecewise linear regression with breakpoint applied to the data in the BAD suggests that the input variables to protein adsorption, i.e., protein concentration in solution; protein descriptors derived from primary structure (number of residues, global protein hydrophobicity and range of amino acid hydrophobicity, isoelectric point); surface descriptors (contact angle); and fluid environment descriptors (pH, ionic strength), correlate well with the output variable-the protein concentration on the surface. Furthermore, neural network analysis revealed that the size of the BAD makes it sufficiently representative, with a neural network-based predictive error of 5% or less. Interestingly, a consistently better fit is obtained if the BAD is divided in two separate sub-sets representing protein adsorption on hydrophilic and hydrophobic surfaces, respectively. Based on these findings, selected entries from the BAD have been used to construct neural network-based estimation routines, which predict the amount of adsorbed protein, the thickness of the adsorbed layer and the surface tension of the protein-covered surface. While the BAD is of general interest, the prediction of the thickness and the surface tension of the protein-covered layers are of particular relevance to the design of microfluidics devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-throughput plasmid DNA (pDNA) manufacture is obstructed predominantly by the performance of conventional stationary phases. For this reason, the search for new materials for fast chromatographic separation of pDNA is ongoing. A poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (GMA-EGDMA) monolithic material was synthesised via a thermal-free radical reaction, functionalised with different amino groups from urea, 2-chloro-N,N-diethylethylamine hydrochloride (DEAE-Cl) and ammonia in order to investigate their plasmid adsorption capacities. Physical characterisation of the monolithic polymer showed a macroporous polymer having a unimodal pore size distribution pivoted at 600 nm. Chromatographic characterisation of the functionalised polymers using pUC19 plasmid isolated from E. coli DH5α-pUC19 showed a maximum plasmid adsorption capacity of 18.73 mg pDNA/mL with a dissociation constant (KD) of 0.11 mg/mL for GMA-EGDMA/DEAE-Cl polymer. Studies on ligand leaching and degradation demonstrated the stability of GMA-EGDMA/DEAE-Cl after the functionalised polymers were contacted with 1.0 M NaOH, which is a model reagent for most 'cleaning in place' (CIP) systems. However, it is the economic advantage of an adsorbent material that makes it so attractive for commercial purification purposes. Economic evaluation of the performance of the functionalised polymers on the grounds of polymer cost (PC)/mg pDNA retained endorsed the suitability of GMA-EGDMA/DEAE-Cl polymer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current approaches for purifying plasmids from bacterial production systems exploit the physiochemical properties of nucleic acids in non-specific capture systems. In this study, an affinity system for plasmid DNA (pDNA) purification has been developed utilizing the interaction between the lac operon (lacO) sequence contained in the pDNA and a 64mer synthetic peptide representing the DNA-binding domain of the lac repressor protein, LacI. Two plasmids were evaluated, the native pUC19 and pUC19 with dual lacO3/lacOs operators (pUC19lacO3/lacOs), where the lacOs operator is perfectly symmetrical. The DNA-protein affinity interaction was evaluated by surface plasmon resonance using a Biacore system. The affinity capture of DNA in a chromatography system was evaluated using LacI peptide that had been immobilized to Streamline™ adsorbent. The KD-values for double stranded DNA (dsDNA) fragments containing lacO1 and lacO3 and lacOs and lacO3 were 5.7 ± 0.3 × 10 -11 M and 4.1 ± 0.2 × 10-11 M respectively, which compare favorably with literature reports of 5 × 10-10 - 1 × 10-9 M for native laCO1 and 1-1.2 × 10-10 M for lacO1 in a saline buffer. Densitometric analysis of the gel bands from the affinity chromatography run clearly showed a significant preference for capture of the supercoiled fraction from the feed pDNA sample. The results indicate the feasibility of the affinity approach for pDNA capture and purification using native protein-DNA interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of a protein-mediated dual functional affinity adsorption of plasmid DNA is described in this work. The affinity ligand for the plasmid DNA comprises a fusion protein with glutathione-S-transferase (GST) as the fusion partner with a zinc finger protein. The protein ligand is first bound to the adsorbent by affinity interaction between the GST moeity and gluthathione that is covalently immobilized to the base matrix. The plasmid binding is then enabled via the zinc finger protein and a specific nucleotide sequence inserted into the DNA. At lower loadings, the binding of the DNA onto the Fractogel, Sepharose, and Streamline matrices was 0.0078 ± 0.0013, 0.0095 ± 0.0016, and 0.0080 ± 0.0006 mg, respectively, to 50 μL of adsorbent. At a higher DNA challenge, the corresponding amounts were 0.0179 ± 0.0043, 0.0219 ± 0.0035, and 0.0190 ± 0.0041 mg, respectively. The relatively constant amounts bound to the three adsorbents indicated that the large DNA molecule was unable to utilize the available zinc finger sites that were located in the internal pores and binding was largely a surface adsorption phenomenon. Utilization of the zinc finger binding sites was shown to be highest for the Fractogel adsorbent. The adsorbed material was eluted with reduced glutathione, and the eluted efficiency for the DNA was between 23% and 27%. The protein elution profile appeared to match the adsorption profiles with significantly higher recoveries of bound GST-zinc finger protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surfaces of natural beidellite were modified with cationic surfactant octadecyl trimethylammonium bromide at different concentrations. The organo-beidellite adsorbent materials were then used for the removal of atrazine with the goal of investigating the mechanism for the adsorption of organic triazine herbicide from contaminated water. Changes on the surfaces and structure of beidellite were characterised by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and BET surface analysis. Kinetics of the adsorption studies were also carried out which show that the adsorption capacity of the organoclays increases with increasing surfactant concentration up until 1.0 CEC surfactant loading, after which the adsorption capacity greatly decreases. TG analysis reveals that although the 2.0 CEC sample has the greatest percentage of surfactant by mass, most of it is present on external sites. The 0.5 CEC sample has the highest proportion of surfactant exchanged into the internal active sites and the 1.0 CEC sample accounts for the highest adsorption capacity. The goodness of fit of the pseudo-second order kinetic confirms that chemical adsorption, rather than physical adsorption, controls the adsorption rate of atrazine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Searching for efficient solid sorbents for CO2 adsorption and separation is important for developing emergent carbon reduction and natural gas purification technology. This work, for the first time, has investigated the adsorption of CO2 on newly experimentally realized cage-like B40 fullerene (Zhai et al., 2014) based on density functional theory calculations. We find that the adsorption of CO2 on B40 fullerene involves a relatively large energy barrier (1.21 eV), however this can be greatly decreased to 0.35 eV by introducing an extra electron. A practical way to realize negatively charged B40 fullerene is then proposed by encapsulating a Li atom into the B40 fullerene (Li@B40). Li@B40 is found to be highly stable and can significantly enhance both the thermodynamics and kinetics of CO2 adsorption, while the adsorptions of N2, CH4 and H2 on the Li@B40 fullerene remain weak in comparison. Since B40 fullerene has been successfully synthesized in a most recent experiment, our results highlight a new promising material for CO2 capture and separation for future experimental validation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly efficient loading of bone morphogenetic protein-2 (BMP-2) onto carriers with desirable performance is still a major challenge in the field of bone regeneration. Till now, the nanoscaled surface-induced changes of the structure and bioactivity of BMP-2 remains poorly understood. Here, the effect of nanoscaled surface on the adsorption and bioactivity of BMP-2 was investigated with a series of hydroxyapatite surfaces (HAPs): HAP crystal-coated surface (HAP), HAP crystal-coated polished surface (HAP-Pol), and sintered HAP crystal-coated surface (HAP-Sin). The adsorption dynamics of recombinant human BMP-2 (rhBMP-2) and the accessibility of the binding epitopes of adsorbed rhBMP-2 for BMP receptors (BMPRs) were examined by a quartz crystal microbalance with dissipation. Moreover, the bioactivity of adsorbed rhBMP-2 and the BMP-induced Smad signaling were investigated with C2C12 model cells. A noticeably high mass-uptake of rhBMP-2 and enhanced recognition of BMPR-IA to adsorbed rhBMP-2 were found on the HAP-Pol surface. For the rhBMP-2-adsorbed HAPs, both ALP activity and Smad signaling increased in the order of HAP-Sin < HAP < HAP-Pol. Furthermore, hybrid molecular dynamics and steered molecular dynamics simulations validated that BMP-2 tightly anchored on the HAP-Pol surface with a relative loosened conformation, but the HAP-Sin surface induced a compact conformation of BMP-2. In conclusion, the nanostructured HAPs can modulate the way of adsorption of rhBMP-2, and thus the recognition of BMPR-IA and the bioactivity of rhBMP-2. These findings can provide insightful suggestions for the future design and fabrication of rhBMP-2-based scaffolds/implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Al13 pillared montmorillonites (AlPMts) prepared with different Al/clay ratios were used to remove Cd(II) and phosphate from aqueous solution. The structure of AlPMts was characterized by X-ray diffraction (XRD), Thermogravimetric analysis (TG), and N2 adsorption–desorption. The basal spacing, intercalated amount of Al13 cations, and specific surface area of AlPMts increased with the increase of the Al/clay ratio. In the single adsorption system, with the increase of the Al/clay ratio, the adsorption of phosphate on AlPMts increased but that of Cd(II) decreased. Significantly enhanced adsorptions of Cd(II) and phosphate on AlPMts were observed in a simultaneous system. For both contaminants, the adsorption of one contaminant would increase with the increase of the initial concentration of the other one and increase in the Al/clay ratio. The enhancement of the adsorption of Cd(II) was much higher than that of phosphate on AlPMt. This suggests that the intercalated Al13 cations are the primary co-adsorption sites for phosphate and Cd(II). X-ray photoelectron spectroscopy (XPS) indicated comparable binding energy of P2p but a different binding energy of Cd3d in single and simultaneous systems. The adsorption and XPS results suggested that the formation of P-bridge ternary surface complexes was the possible adsorption mechanism for promoted uptake of Cd(II) and phosphate on AlPMt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption of proteins at the interface between two immiscible electrolyte solutions has been found to be key to their bioelectroactivity at such interfaces. Combined with interfacial complexation of organic phase anions by cationic proteins, this adsorption process may be exploited to achieve nanomolar protein detection. In this study, replica exchange molecular dynamics simulations have been performed to elucidate for the first time the molecular mechanism of adsorption and subsequent unfolding of hen egg white lysozyme at low pH at a polarized 1,2-dichloroethane/water interface. The unfolding of lysozyme was observed to occur as soon as it reaches the organic−aqueous interface,which resulted in a number of distinct orientations at the interface. In all cases, lysozyme interacted with the organic phase through regions rich in nonpolar amino acids, such that the side chains are directed toward the organic phase, whereas charged and polar residues were oriented toward the aqueous phase. By contrast, as expected, lysozyme in neat water at low pH does not exhibit significant structural changes. These findings demonstrate the key influence of the organic phase upon adsorption of lysozyme under the influence of an electric field, which results in the unfolding of its structure.