355 resultados para Text mining


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a classification problem typically we face two challenging issues, the diverse characteristic of negative documents and sometimes a lot of negative documents that are closed to positive documents. Therefore, it is hard for a single classifier to clearly classify incoming documents into classes. This paper proposes a novel gradual problem solving to create a two-stage classifier. The first stage identifies reliable negatives (negative documents with weak positive characteristics). It concentrates on minimizing the number of false negative documents (recall-oriented). We use Rocchio, an existing recall based classifier, for this stage. The second stage is a precision-oriented “fine tuning”, concentrates on minimizing the number of false positive documents by applying pattern (a statistical phrase) mining techniques. In this stage a pattern-based scoring is followed by threshold setting (thresholding). Experiment shows that our statistical phrase based two-stage classifier is promising.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a cluster ensemble method to map the corpus documents into the semantic space embedded in Wikipedia and group them using multiple types of feature space. A heterogeneous cluster ensemble is constructed with multiple types of relations i.e. document-term, document-concept and document-category. A final clustering solution is obtained by exploiting associations between document pairs and hubness of the documents. Empirical analysis with various real data sets reveals that the proposed meth-od outperforms state-of-the-art text clustering approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identifying product families has been considered as an effective way to accommodate the increasing product varieties across the diverse market niches. In this paper, we propose a novel framework to identifying product families by using a similarity measure for a common product design data BOM (Bill of Materials) based on data mining techniques such as frequent mining and clus-tering. For calculating the similarity between BOMs, a novel Extended Augmented Adjacency Matrix (EAAM) representation is introduced that consists of information not only of the content and topology but also of the fre-quent structural dependency among the various parts of a product design. These EAAM representations of BOMs are compared to calculate the similarity between products and used as a clustering input to group the product fami-lies. When applied on a real-life manufacturing data, the proposed framework outperforms a current baseline that uses orthogonal Procrustes for grouping product families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On our first day in Kalgoorlie, a local woman in her mid-thirties tells us that ‘Kal wouldn’t exist if it wasn’t for mining and prostitution’. In the ensuing days many others would tell us the same thing. More explicitly, in the words of another local resident, ‘The town was founded on brothels. [Without them] the men wouldn’t have been happy and they wouldn’t have got as much gold.’ These two phenomena – mining and prostitution – and their seemingly natural and straightforward connection to each other are also routinely invoked in tourist and popular culture depictions of Kalgoorlie. The Lonely Planet, for example, notes that ‘historically, mineworkers would come straight to town to spend disposable income at Kalgoorlie’s infamous brothels, or at pubs staffed by “skimpies” (scantily clad female bar staff)’.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a promising boundary setting method for solving challenging issues in text classification to produce an effective text classifier. A classifier must identify boundary between classes optimally. However, after the features are selected, the boundary is still unclear with regard to mixed positive and negative documents. A classifier combination method to boost effectiveness of the classification model is also presented. The experiments carried out in the study demonstrate that the proposed classifier is promising.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional text classification technology based on machine learning and data mining techniques has made a big progress. However, it is still a big problem on how to draw an exact decision boundary between relevant and irrelevant objects in binary classification due to much uncertainty produced in the process of the traditional algorithms. The proposed model CTTC (Centroid Training for Text Classification) aims to build an uncertainty boundary to absorb as many indeterminate objects as possible so as to elevate the certainty of the relevant and irrelevant groups through the centroid clustering and training process. The clustering starts from the two training subsets labelled as relevant or irrelevant respectively to create two principal centroid vectors by which all the training samples are further separated into three groups: POS, NEG and BND, with all the indeterminate objects absorbed into the uncertain decision boundary BND. Two pairs of centroid vectors are proposed to be trained and optimized through the subsequent iterative multi-learning process, all of which are proposed to collaboratively help predict the polarities of the incoming objects thereafter. For the assessment of the proposed model, F1 and Accuracy have been chosen as the key evaluation measures. We stress the F1 measure because it can display the overall performance improvement of the final classifier better than Accuracy. A large number of experiments have been completed using the proposed model on the Reuters Corpus Volume 1 (RCV1) which is important standard dataset in the field. The experiment results show that the proposed model has significantly improved the binary text classification performance in both F1 and Accuracy compared with three other influential baseline models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of determining the script and language of a document image has a number of important applications in the field of document analysis, such as indexing and sorting of large collections of such images, or as a precursor to optical character recognition (OCR). In this paper, we investigate the use of texture as a tool for determining the script of a document image, based on the observation that text has a distinct visual texture. An experimental evaluation of a number of commonly used texture features is conducted on a newly created script database, providing a qualitative measure of which features are most appropriate for this task. Strategies for improving classification results in situations with limited training data and multiple font types are also proposed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: