108 resultados para System modeling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sugarcane bagasse is an abundant and sustainable resource, generated as a by-product of sugarcane milling. The cellulosic material within bagasse can be broken down into glucose molecules and fermented to produce ethanol, making it a promising feedstock for biofuel production. Mild acid pretreatment hydrolyses the hemicellulosic component of biomass, thus allowing enzymes greater access to the cellulosic substrate during saccharification. A particle-scale mathematical model describing the mild acid pretreatment of sugarcane bagasse has been developed, using a volume averaged framework. Discrete population-balance equations are used to characterise the polymer degradation kinetics, and diffusive effects account for mass transport within the cell wall of the bagasse. As the fibrous material hydrolyses over time, variations in the porosity of the cell wall and the downstream effects on the reaction kinetics are accounted for using conservation of volume arguments. Non-dimensionalization of the model equations reduces the number of parameters in the system to a set of four dimensionless ratios that compare the timescales of different reaction and diffusion events. Theoretical yield curves are compared to macroscopic experimental observations from the literature and inferences are made as to constraints on these “unknown” parameters. These results enable connections to be made between experimental data and the underlying thermodynamics of acid pretreatment. Consequently, the results suggest that data-fitting techniques used to obtain kinetic parameters should be carefully applied, with prudent consideration given to the chemical and physiological processes being modeled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a framework for isolating unprecedented faults for an EGR valve system is presented. Using normal behavior data generated by a high fidelity engine simulation, the recently introduced Growing Structure Multiple Model System (GSMMS) is used to construct models of normal behavior for an EGR valve system and its various subsystems. Using the GSMMS models as a foundation, anomalous behavior of the entire system is then detected as statistically significant departures of the most recent modeling residuals from the modeling residuals during normal behavior. By reconnecting anomaly detectors to the constituent subsystems, the anomaly can be isolated without the need for prior training using faulty data. Furthermore, faults that were previously encountered (and modeled) are recognized using the same approach as the anomaly detectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a recently introduced model-based method for precedent-free fault detection and isolation (FDI) is modified to deal with multiple input, multiple output (MIMO) systems and is applied to an automotive engine with exhaust gas recirculation (EGR) system. Using normal behavior data generated by a high fidelity engine simulation, the growing structure multiple model system (GSMMS) approach is used to construct dynamic models of normal behavior for the EGR system and its constituent subsystems. Using the GSMMS models as a foundation, anomalous behavior is detected whenever statistically significant departures of the most recent modeling residuals away from the modeling residuals displayed during normal behavior are observed. By reconnecting the anomaly detectors (ADs) to the constituent subsystems, EGR valve, cooler, and valve controller faults are isolated without the need for prior training using data corresponding to particular faulty system behaviors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable robotic perception and planning are critical to performing autonomous actions in uncertain, unstructured environments. In field robotic systems, automation is achieved by interpreting exteroceptive sensor information to infer something about the world. This is then mapped to provide a consistent spatial context, so that actions can be planned around the predicted future interaction of the robot and the world. The whole system is as reliable as the weakest link in this chain. In this paper, the term mapping is used broadly to describe the transformation of range-based exteroceptive sensor data (such as LIDAR or stereo vision) to a fixed navigation frame, so that it can be used to form an internal representation of the environment. The coordinate transformation from the sensor frame to the navigation frame is analyzed to produce a spatial error model that captures the dominant geometric and temporal sources of mapping error. This allows the mapping accuracy to be calculated at run time. A generic extrinsic calibration method for exteroceptive range-based sensors is then presented to determine the sensor location and orientation. This allows systematic errors in individual sensors to be minimized, and when multiple sensors are used, it minimizes the systematic contradiction between them to enable reliable multisensor data fusion. The mathematical derivations at the core of this model are not particularly novel or complicated, but the rigorous analysis and application to field robotics seems to be largely absent from the literature to date. The techniques in this paper are simple to implement, and they offer a significant improvement to the accuracy, precision, and integrity of mapped information. Consequently, they should be employed whenever maps are formed from range-based exteroceptive sensor data. © 2009 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experience gained from numerous projects conducted by the U.S. Environmental Protection Agency's (EPA) Environmental Monitoring Systems Laboratory in Las Vegas, Nevada has provided insight to functional issues of mapping, monitoring, and modeling of wetland habitats. Three case studies in poster form describe these issues pertinent to managing wetland resources as mandated under Federal laws. A multiphase project was initiated by the EPA Alaska operations office to provide detailed wetland mapping of arctic plant communities in an area under petroleum development pressure. Existing classification systems did not meet EPA needs. Therefore a Habitat Classification System (HCS) derived from aerial photography was compiled. In conjunction with this photointerpretive keys were developed. These products enable EPA personnel to map large inaccessible areas of the arctic coastal plain and evaluate the sensitivity of various wetland habitats relative to petroleum development needs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Due to rapidly diminishing international supplies of fossil fuels, such as petroleum and diesel, the cost of fuel is constantly increasing, leading to higher costs of living, as a result of the significant reliance of many industries on motor vehicles. Many technologies have been developed to replace part or all of a fossil fuel with bio-fuels. One of the dual fuel technologies is fumigation of ethanol in diesel engines, which injects ethanol into the intake air stream of the engine. The advantage of this is that it avoids any costly modification of the engine high pressure diesel injection system, while reducing the volume of diesel required and potentially increasing the power output and efficiency. This paper investigates the performance of a diesel engine, converted to implement ethanol fumigation. The project will use both existing experimental data, along with generating computer modeled results using the program AVL Boost. The data from both experiments and the numerical simulation indicate desirable results for the peak pressure and the indicated mean effective pressure (IMEP). Increase in ethanol substitution resulted in elevated combustion pressure and an increase in the IMEP, while the variation of ethanol injection location resulted in negligible change. These increases in cylinder pressure led to a higher work output and total efficiency in the engine as the ethanol substitution was increased. In comparing the numerical and experimental results, the simulation showed a slight elevation, due to the inaccuracies in the heat release models. Future work is required to improve the combustion model and investigate the effect of the variation of the location of ethanol injection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unique high temporal frequency dataset from an irrigated cotton-wheat rotation was used to test the agroecosystem model DayCent to simulate daily N2O emissions from sub-tropical vertisols under different irrigation intensities. DayCent was able to simulate the effect of different irrigation intensities on N2O fluxes and yield, although it tended to overestimate seasonal fluxes during the cotton season. DayCent accurately predicted soil moisture dynamics and the timing and magnitude of high fluxes associated with fertilizer additions and irrigation events. At the daily scale we found a good correlation of predicted vs. measured N2O fluxes (r2 = 0.52), confirming that DayCent can be used to test agricultural practices for mitigating N2O emission from irrigated cropping systems. A 25 year scenario analysis indicated that N2O losses from irrigated cotton-wheat rotations on black vertisols in Australia can be substantially reduced by an optimized fertilizer and irrigation management system (i.e. frequent irrigation, avoidance of excessive fertiliser application), while sustaining maximum yield potentials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the modeling and motion-sensorless direct torque and flux control of a novel dual-airgap axial-flux permanent-magnet machine optimized for use in flywheel energy storage system (FESS) applications. Independent closed-loop torque and stator flux regulation are performed in the stator flux ( x-y) reference frame via two PI controllers. This facilitates fast torque dynamics, which is critical as far as energy charging/discharging in the FESS is concerned. As FESS applications demand high-speed operation, a new field-weakening algorithm is proposed in this paper. Flux weakening is achieved autonomously once the y-axis voltage exceeds the available inverter voltage. An inherently speed sensorless stator flux observer immune to stator resistance variations and dc-offset effects is also proposed for accurate flux and speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a machine prototype.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the modeling and position-sensorless vector control of a dual-airgap axial flux permanent magnet (AFPM) machine optimized for use in flywheel energy storage system (FESS) applications. The proposed AFPM machine has two sets of three-phase stator windings but requires only a single power converter to control both the electromagnetic torque and the axial levitation force. The proper controllability of the latter is crucial as it can be utilized to minimize the vertical bearing stress to improve the efficiency of the FESS. The method for controlling both the speed and axial displacement of the machine is discussed. An inherent speed sensorless observer is also proposed for speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a prototype machine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a novel cage induction generator and presents a mathematical model, through which its behavior can be accurately predicted. The proposed generator system employs a three-phase cage induction machine and generates single-phase and constant-frequency electricity at varying rotor speeds without an intermediate inverter stage. The technique uses any one of the three stator phases of the machine as the excitation winding and the remaining two phases, which are connected in series, as the power winding. The two-series-connected-and-one-isolated (TSCAOI) phase winding configuration magnetically decouples the two sets of windings, enabling independent control. Electricity is generated through the power winding at both sub- and super-synchronous speeds with appropriate excitation to the isolated single winding at any frequency of generation. A dynamic mathematical model, which accurately predicts the behavior of the proposed generator, is also presented and implemented in MATLAB/Simulink. Experimental results of a 2-kW prototype generator under various operating conditions are presented, together with theoretical results, to demonstrate the viability of the TSCAOI power generation. The proposed generator is simple and capable of both storage and retrieval of energy through its excitation winding and is expected to be suitable for applications, such as small wind turbines and microhydro systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel data-driven approach to monitoring of systems operating under variable operating conditions is described. The method is based on characterizing the degradation process via a set of operation-specific hidden Markov models (HMMs), whose hidden states represent the unobservable degradation states of the monitored system while its observable symbols represent the sensor readings. Using the HMM framework, modeling, identification and monitoring methods are detailed that allow one to identify a HMM of degradation for each operation from mixed-operation data and perform operation-specific monitoring of the system. Using a large data set provided by a major manufacturer, the new methods are applied to a semiconductor manufacturing process running multiple operations in a production environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular interactions that underlie pathophysiological states are being elucidated using techniques that profile proteomicend points in cellular systems. Within the field of cancer research, protein interaction networks play pivotal roles in the establishment and maintenance of the hallmarks of malignancy, including cell division, invasion, and migration. Multiple complementary tools enable a multifaceted view of how signal protein pathway alterations contribute to pathophysiological states.One pivotal technique is signal pathway profiling of patient tissue specimens. This microanalysis technology provides a proteomic snapshot at one point in time of cells directly procured from the native context of a tumor micro environment. To study the adaptive patterns of signal pathway events over time, before and after experimental therapy, it is necessary to obtain biopsies from patients before, during, and after therapy. A complementary approach is the profiling of cultured cell lines with and without treatment. Cultured cell models provide the opportunity to study short-term signal changes occurring over minutes to hours. Through this type of system, the effects of particular pharmacological agents may be used to test the effects of signal pathway inhibition or activation on multiple endpoints within a pathway. The complexity of the data generated has necessitated the development of mathematical models for optimal interpretation of interrelated signaling pathways. In combination,clinical proteomic biopsy profiling, tissue culture proteomic profiling, and mathematical modeling synergistically enable a deeper understanding of how protein associations lead to disease states and present new insights into the design of therapeutic regimens.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"This collection of papers offers a broad synopsis of state-of-the-art mathematical methods used in modeling the interaction between tumors and the immune system. These papers were presented at the four-day workshop on Mathematical Models of Tumor-Immune System Dynamics held in Sydney, Australia from January 7th to January 10th, 2013. The workshop brought together applied mathematicians, biologists, and clinicians actively working in the field of cancer immunology to share their current research and to increase awareness of the innovative mathematical tools that are applicable to the growing field of cancer immunology. Recent progress in cancer immunology and advances in immunotherapy suggest that the immune system plays a fundamental role in host defense against tumors and could be utilized to prevent or cure cancer. Although theoretical and experimental studies of tumor-immune system dynamics have a long history, there are still many unanswered questions about the mechanisms that govern the interaction between the immune system and a growing tumor. The multidimensional nature of these complex interactions requires a cross-disciplinary approach to capture more realistic dynamics of the essential biology. The papers presented in this volume explore these issues and the results will be of interest to graduate students and researchers in a variety of fields within mathematical and biological sciences."--Publisher website

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present a pathloss characterization for vehicle-to-vehicle (V2V) communications based on empirical data collected from extensive measurement campaign performed under line-of-sight (LOS), non-line-of-sight (NLOS) and varying traffic densities. The experiment was conducted in three different V2V propagation environments: highway, suburban and urban at 5.8GHz. We developed pathloss models for each of the three different V2V environments considered. Based on a log-distance power law model, the values for the pathloss exponent and the standard deviation of shadowing were reported. The average pathloss exponent ranges from 1.77 for highway, 1.68 for the urban to 1.53 for the suburban environment. The reported results can contribute to vehicular network (VANET) simulators and can be used by system designers to develop, evaluate and validate new protocols and system designs under realistic propagation conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The network reconfiguration is an important stage of restoring a power system after a complete blackout or a local outage. Reasonable planning of the network reconfiguration procedure is essential for rapidly restoring the power system concerned. An approach for evaluating the importance of a line is first proposed based on the line contraction concept. Then, the interpretative structural modeling (ISM) is employed to analyze the relationship among the factors having impacts on the network reconfiguration. The security and speediness of restoring generating units are considered with priority, and a method is next proposed to select the generating unit to be restored by maximizing the restoration benefit with both the generation capacity of the restored generating unit and the importance of the line in the restoration path considered. Both the start-up sequence of generating units and the related restoration paths are optimized together in the proposed method, and in this way the shortcomings of separately solving these two issues in the existing methods are avoided. Finally, the New England 10-unit 39-bus power system and the Guangdong power system in South China are employed to demonstrate the basic features of the proposed method.