673 resultados para Sustainable building
Resumo:
The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.
Resumo:
The building life cycle process is complex and prone to fragmentation as it moves through its various stages. The number of participants, and the diversity, specialisation and isolation both in space and time of their activities, have dramatically increased over time. The data generated within the construction industry has become increasingly overwhelming. Most currently available computer tools for the building industry have offered productivity improvement in the transmission of graphical drawings and textual specifications, without addressing more fundamental changes in building life cycle management. Facility managers and building owners are primarily concerned with highlighting areas of existing or potential maintenance problems in order to be able to improve the building performance, satisfying occupants and minimising turnover especially the operational cost of maintenance. In doing so, they collect large amounts of data that is stored in the building’s maintenance database. The work described in this paper is targeted at adding value to the design and maintenance of buildings by turning maintenance data into information and knowledge. Data mining technology presents an opportunity to increase significantly the rate at which the volumes of data generated through the maintenance process can be turned into useful information. This can be done using classification algorithms to discover patterns and correlations within a large volume of data. This paper presents how and what data mining techniques can be applied on maintenance data of buildings to identify the impediments to better performance of building assets. It demonstrates what sorts of knowledge can be found in maintenance records. The benefits to the construction industry lie in turning passive data in databases into knowledge that can improve the efficiency of the maintenance process and of future designs that incorporate that maintenance knowledge.
Resumo:
This report is the culmination of a two-stage research project to inform the Australian property and construction industry generally, in addition to providing the Australian Building Codes Board (ABCB) with information to allow it to determine whether or not sustainability requirements are necessary in the Future Building Code of Australia (BCA21). The Australian Building Codes Board is a joint initiative of all levels of government in Australia. The Board’s mission is to provide for efficiency and cost effectiveness in meeting community expectations for health, safety and amenity in the design, construction and use of buildings through the creation of nationally consistent building codes, standards, regulatory requirements and regulatory systems. The Stage 1 (literature review) and Stage 2 (workshops) reports are intended to be read in conjunction with one another. These reports and the Database are provided as appendices. The Conclusions of this, the final report, are the result of the overall program of work.
Resumo:
Deficiencies in the design and operation of office buildings can give rise to high social, environmental and economic (triple bottom line) costs. As a result, there are significant pressures and incentives to develop ‘smart building’ technologies that can facilitate improved indoor environment quality (IEQ), and more energy efficient operation of office buildings. IEQ indicators include lighting, ventilation, thermal comfort, indoor air quality and noise. In response to this, the CRC for Construction Innovation commissioned a six-month scoping study (Project no. 2002-043) to examine how different technologies could be used to improve the ‘triple bottom line’ for office buildings. The study was supported by three industry partners, Bovis Lend Lease, Arup, and The Queensland Department of Public Works. The objective of the study was to look at the history, trends, drivers, new technologies and potential application areas related to the operation of healthy and efficient office buildings. The key output from the study was a recommendation for a prototype system for intelligent monitoring and control of an office environment, based on identified market, technical and user requirements and constraints.
Resumo:
Objectives The objectives of this project were two-fold: • Assess the ease with which current architectural CAD systems supported the use ofparametric descriptions in defining building shape, engineering system performance and cost at the early stages of building design; • Assess the feasibility of implementing a software decision support system that allowed designers to trade-off the characteristics and configuration of various engineering systems to move towards a “global optimum” rather than considering each system in isolation and expecting humans to weigh up all of the costs and benefits. The first stage of the project consisted of using four different CAD systems to define building shells (envelopes) with different usages. These models were then exported into a shared database using the IFC information exchange specifications. The second stage involved the implementation of small computer programs that were able to estimate relevant system parameters based on performance requirements and the constraints imposed by the other systems. These are presented in a unified user interface that extracts the appropriate building shape parameters from the shared database Note that the term parametric in this context refers to the relationships among and between all elements of the building model - not just geometric associations - which will enable the desired coordination.
Resumo:
Principal Topic Small and micro-enterprises are believed to play a significant part in economic growth and poverty allevition in developing countries. However, there are a range of issues that arise when looking at the support required for local enterprise development, the role of micro finance and sustainability. This paper explores the issues associated with the establishment and resourcing of micro-enterprise develoment and proposes a model of sustainable support of enterprise development in very poor developing economies, particularly in Africa. The purpose of this paper is to identify and address the range of issues raised by the literature and empirical research in Africa, regarding micro-finance and small business support, and to develop a model for sustainable support for enterprise development within a particular cultural and economic context. Micro-finance has become big business with a range of models - from those that operate on a strictly business basis to those that come from a philanthropic base. The models used grow from a range of philosophical and cultural perspectives. Entrepreneurship training is provided around the world. Success is often measured by the number involved and the repayment rates - which are very high, largely because of the lending models used. This paper will explore the range of options available and propose a model that can be implemented and evaluated in rapidly changing developing economies. Methodology/Key Propositions The research draws on entrepreneurial and micro-finance literature and empirical research undertaken in Mozambique, which lies along the Indian ocean sea border of Southern Africa. As a result of war and natural disasters over a prolonged period, there is little industry, primary industries are primitive and there is virtually no infrastructure. Mozambique is ranked as one of the poorest countries in the world. The conditions in Mozambique, though not identical, reflect conditions in many other parts of Africa. A numebr of key elements in the development of enterprises in poor countries are explored including: Impact of micro-finance Sustainable models of micro-finance Education and training Capacity building Support mechanisms Impact on poverty, families and the local economy Survival entrepreneurship versus growth entrepreneurship Transitions to the formal sector. Results and Implications The result of this study is the development of a model for providing intellectual and financial resources to micro-entrepreneurs in poor developing countries in a sustainable way. The model provides a base for ongoing research into the process of entrepreneurial growth in African developing economies. The research raises a numeber of issues regarding sustainability including the nature of the donor/recipient relationship, access to affordable resources, the impact of individual entrepreneurial activity on the local economny and the need for ongoing research to understand the whole process and its impact, intended and unintended.
Resumo:
The main objective was to compare the environmental impacts of a building undergoing refurbishment both before and after the refurbishment and to assist in the design of the refurbishment with what is learned.
Resumo:
This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.
Resumo:
This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.
Resumo:
The Your Building Project to build a website as the business and technical guide to sustainable commercial buildings has now been completed. The site is available at www.yourbuilding.org. The project was delivered to meet the requirements of the funding agreement between the Commonwealth of Australia represented by the Department of the Environment and Heritage (now Department of the Environment and Water Resources) and the Cooperative Research Centre for Construction Innovation (Construction Innovation).
Resumo:
The indoor air quality (IAQ) in buildings is currently assessed by measurement of pollutants during building operation for comparison with air quality standards. Current practice at the design stage tries to minimise potential indoor air quality impacts of new building materials and contents by selecting low-emission materials. However low-emission materials are not always available, and even when used the aggregated pollutant concentrations from such materials are generally overlooked. This paper presents an innovative tool for estimating indoor air pollutant concentrations at the design stage, based on emissions over time from large area building materials, furniture and office equipment. The estimator considers volatile organic compounds, formaldehyde and airborne particles from indoor materials and office equipment and the contribution of outdoor urban air pollutants affected by urban location and ventilation system filtration. The estimated pollutants are for a single, fully mixed and ventilated zone in an office building with acceptable levels derived from Australian and international health-based standards. The model acquires its dimensional data for the indoor spaces from a 3D CAD model via IFC files and the emission data from a building products/contents emissions database. This paper describes the underlying approach to estimating indoor air quality and discusses the benefits of such an approach for designers and the occupants of buildings.
Resumo:
The quality of office indoor environments is considered to consist of those factors that impact occupants according to their health and well-being and (by consequence) their productivity. Indoor Environment Quality (IEQ) can be characterized by four indicators: • Indoor air quality indicators • Thermal comfort indicators • Lighting indicators • Noise indicators. Within each indicator, there are specific metrics that can be utilized in determining an acceptable quality of an indoor environment based on existing knowledge and best practice. Examples of these metrics are: indoor air levels of pollutants or odorants; operative temperature and its control; radiant asymmetry; task lighting; glare; ambient noise. The way in which these metrics impact occupants is not fully understood, especially when multiple metrics may interact in their impacts. While the potential cost of lost productivity from poor IEQ has been estimated to exceed building operation costs, the level of impact and the relative significance of the above four indicators are largely unknown. However, they are key factors in the sustainable operation or refurbishment of office buildings. This paper presents a methodology for assessing indoor environment quality (IEQ) in office buildings, and indicators with related metrics for high performance and occupant comfort. These are intended for integration into the specification of sustainable office buildings as key factors to ensure a high degree of occupant habitability, without this being impaired by other sustainability factors. The assessment methodology was applied in a case study on IEQ in Australia’s first ‘six star’ sustainable office building, Council House 2 (CH2), located in the centre of Melbourne. The CH2 building was designed and built with specific focus on sustainability and the provision of a high quality indoor environment for occupants. Actual IEQ performance was assessed in this study by field assessment after construction and occupancy. For comparison, the methodology was applied to a 30 year old conventional building adjacent to CH2 which housed the same or similar occupants and activities. The impact of IEQ on occupant productivity will be reported in a separate future paper