557 resultados para Sugar-phosphate structure


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Experimental investigation of functionally graded calcium phosphate-based bio-active films on Ti-6A1-4V orthopaedic alloy prepared in an RF magnetron sputtering plasma reactor is reported. The technique involves concurrent sputtering of Hydroxyapatite (HA) and Ti targets, which results in remarkably enhanced adhesion of the film to the substrate and stability of the interface. The films have been characterized using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The XPS data show that the films are composed of O, Ca, P and Ti, and reveal the formation of O=P groups and hybridization of O-Ca-P. The XRD pattern shows that the Ca-P thin films are of crystalline calcium oxide phosphate (4CaO·P2O5) with preferred orientation varying with processing parameters. High-resolution optical emission spectra show that the emission of CaO is dominant. The CaO, PO and CaPO species are strongly influenced by deposition conditions. The introduction of Ti element during deposition provides a stable interface between bio-inert substrates Ti-6A1-4V and bioactive HA coating. In-vitro cell culturing tests suggest excellent biocompatibility of the Ca-P-Ti films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineral series triplite-zwieselite with theoretical formula (Mn2+)2(PO4)(F)-(Fe2+)2(PO4)(F) from the El Criolo granitic pegmatite, located in the Eastern Pampean Ranges of Córdoba Province, was studied using electron microprobe, thermogravimetry, and Raman and infrared spectroscopy. The analysis of the mineral provided a formula of (Fe1.00, Mn0.85, Ca0.08, Mg0.06)∑2.00(PO4)1.00(F0.80, OH0.20)∑1.00. An intense Raman band at 981 cm−1 with a shoulder at 977 cm−1 is assigned to the ν1 symmetric stretching mode. The observation of two bands for the phosphate symmetric stretching mode offers support for the concept that the phosphate units in the structure of triplite-zwieselite are not equivalent. Low-intensity Raman bands at 1012, 1036, 1071, 1087, and 1127 cm−1 are assigned to the ν3 antisymmetric stretching modes. A set of Raman bands at 572, 604, 639, and 684 cm−1 are attributed to the ν4 out-of-plane bending modes. A single intense Raman band is found at 3508 cm−1 and is assigned to the stretching vibration of hydroxyl units. Infrared bands are observed at 3018, 3125, and 3358 cm−1 and are attributed to water stretching vibrations. Supplemental materials are available for this article. Go to the publisher's online edition of Spectroscopy Letters to view the supplemental file.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The repeat unit structure of the K2 capsule from an extensively antibiotic-resistant Acinetobacter baumannii global clone 2 (GC2) strain was determined. The oligosaccharide contains three simple sugars, d-glucopyranose, d-galatopyranose and N-acetyl-d-galactosamine, and the complex sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-l-glycero-l-manno-non-2-ulosonic acid (Pse5Ac7Ac or pseudaminic acid), which has not previously been reported in any A. baumannii capsule. The strain was found to carry all the genes required for the synthesis of the sugars and construction of the K2 structure. The linkages catalyzed by the initiating transferase, three glycosyltransferases and the Wzy polymerase were also predicted. Examination of publicly available A. baumannii genome sequences revealed that the same gene cluster, KL2, often occurs in extensively antibiotic-resistant GC2 isolates and in further strain types. The gene module responsible for the synthesis of pseudaminic acid was also detected in four other K loci. A related module including genes for an acylated relative of pseudaminic acid was also found in two new KL types. A polymerase chain reaction scheme was developed to detect all modules containing genes for sugars based on pseudaminic acid and to specifically detect KL2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phosphohedyphane Ca2Pb3(PO4)3Cl is rare Ca and Pb phosphate mineral that belongs to the apatite supergroup. We have analysed phosphohedyphane using SEM with EDX, and Raman and infrared spectroscopy. The chemical analysis shows the presence of Pb, Ca, P and Cl and the chemical formula is expressed as Ca2Pb3(PO4)3Cl. The very sharp Raman band at 975 cm−1 is assigned to the PO43-ν1 symmetric stretching mode. Raman bands noted at 1073, 1188 and 1226 cm−1 are to the attributed to the PO43-ν3 antisymmetric stretching modes. The two Raman bands at 835 and 812 cm−1 assigned to the AsO43-ν1 symmetric stretching vibration and AsO43-ν3 antisymmetric stretching modes prove the substitution of As for P in the structure of phosphohedyphane. A series of bands at 557, 577 and 595 cm−1 are attributed to the ν4 out of plane bending modes of the PO4 units. The multiplicity of bands in the ν2, ν3 and ν4 spectral regions provides evidence for the loss of symmetry of the phosphate anion in the phosphohedyphane structure. Observed bands were assigned to the stretching and bending vibrations of phosphate tetrahedra. Some Raman bands attributable to OH stretching bands were observed, indicating the presence of water and/or OH units in the structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineral barahonaite is in all probability a member of the smolianinovite group. The mineral is an arsenate mineral formed as a secondary mineral in the oxidized zone of sulphide deposits. We have studied the barahonaite mineral using a combination of Raman and infrared spectroscopy. The mineral is characterized by a series of Raman bands at 863 cm−1 with low wavenumber shoulders at 802 and 828 cm−1. These bands are assigned to the arsenate and hydrogen arsenate stretching vibrations. The infrared spectrum shows a broad spectral profile. Two Raman bands at 506 and 529 cm−1 are assigned to the triply degenerate arsenate bending vibration (F 2, ν4), and the Raman bands at 325, 360, and 399 cm−1 are attributed to the arsenate ν2 bending vibration. Raman and infrared bands in the 2500–3800 cm−1 spectral range are assigned to water and hydroxyl stretching vibrations. The application of Raman spectroscopy to study the structure of barahonaite is better than infrared spectroscopy, probably because of the much higher spatial resolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the phosphate mineral vantasselite Al4(PO4)3(OH)3·9H2O using a combination of SEM with EDX and Raman and infrared spectroscopy. Qualitative chemical analysis shows Al, Fe and P. Raman bands at 1013 and 1027cm−1 are assigned to the PO43−ν1 symmetric stretching mode. The observation of two bands suggests the non-equivalence of the phosphate units in the vantasselite structure. Raman bands at 1051, 1076 and 1090cm−1 are attributed to the PO43−ν3 antisymmetric stretching vibration. A comparison is made with the spectroscopy of wardite. Strong infrared bands at 1044, 1078, 1092, 1112, 1133, 1180 and 1210cm−1 are attributed to the PO43−ν3 antisymmetric stretching mode. Some of these bands may be due to δAl2OH deformation modes. Vibrational spectroscopy offers a mechanism for the study of the molecular structure of vantasselite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: This study investigated the ability of an osteoconductive biphasic scaffold to simultaneously regenerate alveolar bone, periodontal ligament and cementum. MATERIALS AND METHODS: A biphasic scaffold was built by attaching a fused deposition modelled bone compartment to a melt electrospun periodontal compartment. The bone compartment was coated with a calcium phosphate (CaP) layer for increasing osteoconductivity, seeded with osteoblasts and cultured in vitro for 6 weeks. The resulting constructs were then complemented with the placement of PDL cell sheets on the periodontal compartment, attached to a dentin block and subcutaneously implanted into athymic rats for 8 weeks. Scanning electron microscopy, X-ray diffraction, alkaline phosphatase and DNA content quantification, confocal laser microscopy, micro computerized tomography and histological analysis were employed to evaluate the scaffold's performance. RESULTS: The in vitro study showed that alkaline phosphatase activity was significantly increased in the CaP-coated samples and they also displayed enhanced mineralization. In the in vivo study, significantly more bone formation was observed in the coated scaffolds. Histological analysis revealed that the large pore size of the periodontal compartment permitted vascularization of the cell sheets, and periodontal attachment was achieved at the dentin interface. CONCLUSIONS: This work demonstrates that the combination of cell sheet technology together with an osteoconductive biphasic scaffold could be utilized to address the limitations of current periodontal regeneration techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The repeat unit of the K12 capsular polysaccharide isolated from the Acinetobacter baumannii global clone 1 clinical isolate, D36, was elucidated by means of chemical and spectroscopical methods. The structure was shown to contain N-acetyl-D-galactosamine (D-GalpNAc), N-acetyl-D-fucosamine and N-acetyl-L-fucosamine linked together in the main chain, with the novel sugar, 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-altro-non-2-ulosonic acid (5,7-di-N-acetylacinetaminic acid or Aci5Ac7Ac), attached to D-GalpNAc as a side branch. This matched the sugar composition of the K12 capsule and the genetic content of the KL12 capsule gene cluster reported previously. D-FucpNAc was predicted to be the substrate for the initiating transferase, ItrB3, with the Wzy polymerase making a α-D-FucpNAc-(1 → 3)-D-GalpNAc linkage between the repeat units. The three glycosyltransferases encoded by KL12 are all retaining glycosyltransferases and were predicted to form specific linkages between the sugars in the K12 repeat unit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Al13 pillared montmorillonites (AlPMts) prepared with different Al/clay ratios were used to remove Cd(II) and phosphate from aqueous solution. The structure of AlPMts was characterized by X-ray diffraction (XRD), Thermogravimetric analysis (TG), and N2 adsorption–desorption. The basal spacing, intercalated amount of Al13 cations, and specific surface area of AlPMts increased with the increase of the Al/clay ratio. In the single adsorption system, with the increase of the Al/clay ratio, the adsorption of phosphate on AlPMts increased but that of Cd(II) decreased. Significantly enhanced adsorptions of Cd(II) and phosphate on AlPMts were observed in a simultaneous system. For both contaminants, the adsorption of one contaminant would increase with the increase of the initial concentration of the other one and increase in the Al/clay ratio. The enhancement of the adsorption of Cd(II) was much higher than that of phosphate on AlPMt. This suggests that the intercalated Al13 cations are the primary co-adsorption sites for phosphate and Cd(II). X-ray photoelectron spectroscopy (XPS) indicated comparable binding energy of P2p but a different binding energy of Cd3d in single and simultaneous systems. The adsorption and XPS results suggested that the formation of P-bridge ternary surface complexes was the possible adsorption mechanism for promoted uptake of Cd(II) and phosphate on AlPMt.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed double-decker Eu\[Pc(15C5)4](TPP) (1) was obtained by base-catalysed tetramerisation of 4,5-dicyanobenzo-15-crown-5 using the half-sandwich complex Eu(TPP)(acac) (acac = acetylacetonate), generated in situ, as the template. For comparative studies, the mixed triple-decker complexes Eu2\[Pc(15C5)4](TPP)2 (2) and Eu2\[Pc(15C5)4]2(TPP) (3) were also synthesised by the raise-by-one-story method. These mixed ring sandwich complexes were characterised by various spectroscopic methods. Up to four one-electron oxidations and two one-electron reductions were revealed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). As shown by electronic absorption and infrared spectroscopy, supramolecular dimers (SM1 and SM3) were formed from the corresponding double-decker 1 and triple-decker 3 in the presence of potassium ions in MeOH/CHCl3.