138 resultados para Strong migration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epidermal growth factor (EGF) activation of the EGF receptor (EGFR) is an important mediator of cell migration, and aberrant signaling via this system promotes a number of malignancies including ovarian cancer. We have identified the cell surface glycoprotein CDCP1 as a key regulator of EGF/EGFR-induced cell migration. We show that signaling via EGF/EGFR induces migration of ovarian cancer Caov3 and OVCA420 cells with concomitant up-regulation of CDCP1 mRNA and protein. Consistent with a role in cell migration CDCP1 relocates from cell-cell junctions to punctate structures on filopodia after activation of EGFR. Significantly, disruption of CDCP1 either by silencing or the use of a function blocking antibody efficiently reduces EGF/EGFR-induced cell migration of Caov3 and OVCA420 cells. We also show that up-regulation of CDCP1 is inhibited by pharmacological agents blocking ERK but not Src signaling, indicating that the RAS/RAF/MEK/ERK pathway is required downstream of EGF/EGFR to induce increased expression of CDCP1. Our immunohistochemical analysis of benign, primary, and metastatic serous epithelial ovarian tumors demonstrates that CDCP1 is expressed during progression of this cancer. These data highlight a novel role for CDCP1 in EGF/EGFR-induced cell migration and indicate that targeting of CDCP1 may be a rational approach to inhibit progression of cancers driven by EGFR signaling including those resistant to anti-EGFR drugs because of activating mutations in the RAS/RAF/MEK/ERK pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed Genetic Algorithms (DGAs) designed for the Internet have to take its high communication cost into consideration. For island model GAs, the migration topology has a major impact on DGA performance. This paper describes and evaluates an adaptive migration topology optimizer that keeps the communication load low while maintaining high solution quality. Experiments on benchmark problems show that the optimized topology outperforms static or random topologies of the same degree of connectivity. The applicability of the method on real-world problems is demonstrated on a hard optimization problem in VLSI design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIMS: To test a model that delineates advanced practice nursing from the practice profile of other nursing roles and titles. BACKGROUND: There is extensive literature on advanced practice reporting the importance of this level of nursing to contemporary health service and patient outcomes. Literature also reports confusion and ambiguity associated with advanced practice nursing. Several countries have regulation and delineation for the nurse practitioner, but there is less clarity in definition and service focus of other advanced practice nursing roles. DESIGN: A statewide survey. METHODS: Using the modified Strong Model of Advanced Practice Role Delineation tool, a survey was conducted in 2009 with a random sample of registered nurses/midwives from government facilities in Queensland, Australia. Analysis of variance compared total and subscale scores across groups according to grade. Linear, stepwise multiple regression analysis examined factors influencing advanced practice nursing activities across all domains. RESULTS: There were important differences according to grade in mean scores for total activities in all domains of advanced practice nursing. Nurses working in advanced practice roles (excluding nurse practitioners) performed more activities across most advanced practice domains. Regression analysis indicated that working in clinical advanced practice nursing roles with higher levels of education were strong predictors of advanced practice activities overall. CONCLUSION: Essential and appropriate use of advanced practice nurses requires clarity in defining roles and practice levels. This research delineated nursing work according to grade and level of practice, further validating the tool for the Queensland context and providing operational information for assigning innovative nursing service.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of MHD natural convection boundary layer flow of an electrically conducting and optically dense gray viscous fluid along a heated vertical plate is analyzed in the presence of strong cross magnetic field with radiative heat transfer. In the analysis radiative heat flux is considered by adopting optically thick radiation limit. Attempt is made to obtain the solutions valid for liquid metals by taking Pr≪1. Boundary layer equations are transformed in to a convenient dimensionless form by using stream function formulation (SFF) and primitive variable formulation (PVF). Non-similar equations obtained from SFF are then simulated by implicit finite difference (Keller-box) method whereas parabolic partial differential equations obtained from PVF are integrated numerically by hiring direct finite difference method over the entire range of local Hartmann parameter, $xi$ . Further, asymptotic solutions are also obtained for large and small values of local Hartmann parameter $xi$ . A favorable agreement is found between the results for small, large and all values of $xi$ . Numerical results are also demonstrated graphically by showing the effect of various physical parameters on shear stress, rate of heat transfer, velocity and temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper gives a review of recent progress in the design of numerical methods for computing the trajectories (sample paths) of solutions to stochastic differential equations. We give a brief survey of the area focusing on a number of application areas where approximations to strong solutions are important, with a particular focus on computational biology applications, and give the necessary analytical tools for understanding some of the important concepts associated with stochastic processes. We present the stochastic Taylor series expansion as the fundamental mechanism for constructing effective numerical methods, give general results that relate local and global order of convergence and mention the Magnus expansion as a mechanism for designing methods that preserve the underlying structure of the problem. We also present various classes of explicit and implicit methods for strong solutions, based on the underlying structure of the problem. Finally, we discuss implementation issues relating to maintaining the Brownian path, efficient simulation of stochastic integrals and variable-step-size implementations based on various types of control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pioneering work of Runge and Kutta a hundred years ago has ultimately led to suites of sophisticated numerical methods suitable for solving complex systems of deterministic ordinary differential equations. However, in many modelling situations, the appropriate representation is a stochastic differential equation and here numerical methods are much less sophisticated. In this paper a very general class of stochastic Runge-Kutta methods is presented and much more efficient classes of explicit methods than previous extant methods are constructed. In particular, a method of strong order 2 with a deterministic component based on the classical Runge-Kutta method is constructed and some numerical results are presented to demonstrate the efficacy of this approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years considerable attention has been paid to the numerical solution of stochastic ordinary differential equations (SODEs), as SODEs are often more appropriate than their deterministic counterparts in many modelling situations. However, unlike the deterministic case numerical methods for SODEs are considerably less sophisticated due to the difficulty in representing the (possibly large number of) random variable approximations to the stochastic integrals. Although Burrage and Burrage [High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations, Applied Numerical Mathematics 22 (1996) 81-101] were able to construct strong local order 1.5 stochastic Runge-Kutta methods for certain cases, it is known that all extant stochastic Runge-Kutta methods suffer an order reduction down to strong order 0.5 if there is non-commutativity between the functions associated with the multiple Wiener processes. This order reduction down to that of the Euler-Maruyama method imposes severe difficulties in obtaining meaningful solutions in a reasonable time frame and this paper attempts to circumvent these difficulties by some new techniques. An additional difficulty in solving SODEs arises even in the Linear case since it is not possible to write the solution analytically in terms of matrix exponentials unless there is a commutativity property between the functions associated with the multiple Wiener processes. Thus in this present paper first the work of Magnus [On the exponential solution of differential equations for a linear operator, Communications on Pure and Applied Mathematics 7 (1954) 649-673] (applied to deterministic non-commutative Linear problems) will be applied to non-commutative linear SODEs and methods of strong order 1.5 for arbitrary, linear, non-commutative SODE systems will be constructed - hence giving an accurate approximation to the general linear problem. Secondly, for general nonlinear non-commutative systems with an arbitrary number (d) of Wiener processes it is shown that strong local order I Runge-Kutta methods with d + 1 stages can be constructed by evaluated a set of Lie brackets as well as the standard function evaluations. A method is then constructed which can be efficiently implemented in a parallel environment for this arbitrary number of Wiener processes. Finally some numerical results are presented which illustrate the efficacy of these approaches. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Burrage and Burrage [1] it was shown that by introducing a very general formulation for stochastic Runge-Kutta methods, the previous strong order barrier of order one could be broken without having to use higher derivative terms. In particular, methods of strong order 1.5 were developed in which a Stratonovich integral of order one and one of order two were present in the formulation. In this present paper, general order results are proven about the maximum attainable strong order of these stochastic Runge-Kutta methods (SRKs) in terms of the order of the Stratonovich integrals appearing in the Runge-Kutta formulation. In particular, it will be shown that if an s-stage SRK contains Stratonovich integrals up to order p then the strong order of the SRK cannot exceed min{(p + 1)/2, (s - 1)/2), p greater than or equal to 2, s greater than or equal to 3 or 1 if p = 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the new literacy demands in the middle years of schooling project in which the affordances of placed-based pedagogy are being explored through teacher inquiries and classroom-based design experiments. The school is located within a large-scale urban renewal project in which houses are being demolished and families relocated. The original school buildings have recently been demolished and replaced by a large ‘superschool’ which serves a bigger student population from a wider area. Drawing on both quantitative and qualitative data, the teachers reported that the language literacy learning of students (including a majority of students learning English as a second language) involved in the project exceeded their expectations. The project provided the motivation for them to develop their oral language repertoires, by involving them in processes such as conducting interviews with adults for their oral histories, through questioning the project manager in regular meetings, and through reporting to their peers and the wider community at school assemblies. At the same time students’ written and multimodal documentation of changes in the neighbourhood and the school grounds extended their literate and semiotic repertoires as they produced books, reports, films, powerpoints, visual designs and models of structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell invasion, characterised by moving fronts of cells, is an essential aspect of development, repair and disease. Typically, mathematical models of cell invasion are based on the Fisher–Kolmogorov equation. These traditional parabolic models can not be used to represent experimental measurements of individual cell velocities within the invading population since they imply that information propagates with infinite speed. To overcome this limitation we study combined cell motility and proliferation based on a velocity–jump process where information propagates with finite speed. The model treats the total population of cells as two interacting subpopulations: a subpopulation of left–moving cells, $L(x,t)$, and a subpopulation of right–moving cells, $R(x,t)$. This leads to a system of hyperbolic partial differential equations that includes a turning rate, $\Lambda \ge 0$, describing the rate at which individuals in the population change direction of movement. We present exact travelling wave solutions of the system of partial differential equations for the special case where $\Lambda = 0$ and in the limit that $\Lambda \to \infty$. For intermediate turning rates, $0 < \Lambda < \infty$, we analyse the travelling waves using the phase plane and we demonstrate a transition from smooth monotone travelling waves to smooth nonmonotone travelling waves as $\Lambda$ decreases through a critical value $\Lambda_{crit}$. We conclude by providing a qualitative comparison between the travelling wave solutions of our model and experimental observations of cell invasion. This comparison indicates that the small $\Lambda$ limit produces results that are consistent with experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantitative imaging methods to analyze cell migration assays are not standardized. Here we present a suite of two–dimensional barrier assays describing the collective spreading of an initially–confined population of 3T3 fibroblast cells. To quantify the motility rate we apply two different automatic image detection methods to locate the position of the leading edge of the spreading population after 24, 48 and 72 hours. These results are compared with a manual edge detection method where we systematically vary the detection threshold. Our results indicate that the observed spreading rates are very sensitive to the choice of image analysis tools and we show that a standard measure of cell migration can vary by as much as 25% for the same experimental images depending on the details of the image analysis tools. Our results imply that it is very difficult, if not impossible, to meaningfully compare previously published measures of cell migration since previous results have been obtained using different image analysis techniques and the details of these techniques are not always reported. Using a mathematical model, we provide a physical interpretation of our edge detection results. The physical interpretation is important since edge detection algorithms alone do not specify any physical measure, or physical definition, of the leading edge of the spreading population. Our modeling indicates that variations in the image threshold parameter correspond to a consistent variation in the local cell density. This means that varying the threshold parameter is equivalent to varying the location of the leading edge in the range of approximately 1–5% of the maximum cell density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell migration is a behaviour critical to many key biological effects, including wound healing, cancerous cell invasion and morphogenesis, the development of an organism from an embryo. However, given that each of these situations is distinctly different and cells are extremely complicated biological objects, interest lies in more basic experiments which seek to remove conflating factors and present a less complex environment within which cell migration can be experimentally examined. These include in vitro studies like the scratch assay or circle migration assay, and ex vivo studies like the colonisation of the hindgut by neural crest cells. The reduced complexity of these experiments also makes them much more enticing as problems to mathematically model, like done here. The primary goal of the mathematical models used in this thesis is to shed light on which cellular behaviours work to generate the travelling waves of invasion observed in these experiments, and to explore how variations in these behaviours can potentially predict differences in this invasive pattern which are experimentally observed when cell types or chemical environment are changed. Relevant literature has already identified the difficulty of distinguishing between these behaviours when using traditional mathematical biology techniques operating on a macroscopic scale, and so here a sophisticated individual-cell-level model, an extension of the Cellular Potts Model (CPM), is been constructed and used to model a scratch assay experiment. This model includes a novel mechanism for dealing with cell proliferations that allowed for the differing properties of quiescent and proliferative cells to be implemented into their behaviour. This model is considered both for its predictive power and used to make comparisons with the travelling waves which result in more traditional macroscopic simulations. These comparisons demonstrate a surprising amount of agreement between the two modelling frameworks, and suggest further novel modifications to the CPM that would allow it to better model cell migration. Considerations of the model’s behaviour are used to argue that the dominant effect governing cell migration (random motility or signal-driven taxis) likely depends on the sort of invasion demonstrated by cells, as easily seen by microscopic photography. Additionally, a scratch assay simulated on a non-homogeneous domain consisting of a ’fast’ and ’slow’ region is also used to further differentiate between these different potential cell motility behaviours. A heterogeneous domain is a novel situation which has not been considered mathematically in this context, nor has it been constructed experimentally to the best of the candidate’s knowledge. Thus this problem serves as a thought experiment used to test the conclusions arising from the simulations on homogeneous domains, and to suggest what might be observed should this non-homogeneous assay situation be experimentally realised. Non-intuitive cell invasion patterns are predicted for diffusely-invading cells which respond to a cell-consumed signal or nutrient, contrasted with rather expected behaviour in the case of random-motility-driven invasion. The potential experimental observation of these behaviours is demonstrated by the individual-cell-level model used in this thesis, which does agree with the PDE model in predicting these unexpected invasion patterns. In the interest of examining such a case of a non-homogeneous domain experimentally, some brief suggestion is made as to how this could be achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Travelling wave phenomena are observed in many biological applications. Mathematical theory of standard reaction-diffusion problems shows that simple partial differential equations exhibit travelling wave solutions with constant wavespeed and such models are used to describe, for example, waves of chemical concentrations, electrical signals, cell migration, waves of epidemics and population dynamics. However, as in the study of cell motion in complex spatial geometries, experimental data are often not consistent with constant wavespeed. Non-local spatial models have successfully been used to model anomalous diffusion and spatial heterogeneity in different physical contexts. In this paper, we develop a fractional model based on the Fisher-Kolmogoroff equation and analyse it for its wavespeed properties, attempting to relate the numerical results obtained from our simulations to experimental data describing enteric neural crest-derived cells migrating along the intact gut of mouse embryos. The model proposed essentially combines fractional and standard diffusion in different regions of the spatial domain and qualitatively reproduces the behaviour of neural crest-derived cells observed in the caecum and the hindgut of mouse embryos during in vivo experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This introduction to the volume places the study of migration within the wider processes of social change and the complex actions of class, gender and ethnicity that are integrated into the experience of displacement. It argues that the articles in this volume contribute important new ethnographic and theoretical analyses to our knowledge and understanding of the constraints and the opportunities provided by cultural diversity in several societies by elaborating upon recent advances made in conceptualisations of migrancy. It places particular emphasis on developing phenomenological approaches to migration studies which incorporate the lived experience of migrants into any analysis. It also suggests that redressing the neglect of this area of study in Australia has the possibility of generating informed interruptions into the current political shift towards divisive public debates on immigration and cultural pluralism.