211 resultados para Steam generation
Resumo:
The Queensland University of Technology (QUT) allows the presentation of a thesis for the Degree of Doctor of Philosophy in the format of published or submitted papers, where such papers have been published, accepted or submitted during the period of candidature. This thesis is composed of seven published/submitted papers, of which one has been published, three accepted for publication and the other three are under review. This project is financially supported by an Australian Research Council (ARC) Discovery Grant with the aim of proposing strategies for the performance control of Distributed Generation (DG) system with digital estimation of power system signal parameters. Distributed Generation (DG) has been recently introduced as a new concept for the generation of power and the enhancement of conventionally produced electricity. Global warming issue calls for renewable energy resources in electricity production. Distributed generation based on solar energy (photovoltaic and solar thermal), wind, biomass, mini-hydro along with use of fuel cell and micro turbine will gain substantial momentum in the near future. Technically, DG can be a viable solution for the issue of the integration of renewable or non-conventional energy resources. Basically, DG sources can be connected to local power system through power electronic devices, i.e. inverters or ac-ac converters. The interconnection of DG systems to power system as a compensator or a power source with high quality performance is the main aim of this study. Source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, distortion at the point of common coupling in weak source cases, source current power factor, and synchronism of generated currents or voltages are the issues of concern. The interconnection of DG sources shall be carried out by using power electronics switching devices that inject high frequency components rather than the desired current. Also, noise and harmonic distortions can impact the performance of the control strategies. To be able to mitigate the negative effect of high frequency and harmonic as well as noise distortion to achieve satisfactory performance of DG systems, new methods of signal parameter estimation have been proposed in this thesis. These methods are based on processing the digital samples of power system signals. Thus, proposing advanced techniques for the digital estimation of signal parameters and methods for the generation of DG reference currents using the estimates provided is the targeted scope of this thesis. An introduction to this research – including a description of the research problem, the literature review and an account of the research progress linking the research papers – is presented in Chapter 1. One of the main parameters of a power system signal is its frequency. Phasor Measurement (PM) technique is one of the renowned and advanced techniques used for the estimation of power system frequency. Chapter 2 focuses on an in-depth analysis conducted on the PM technique to reveal its strengths and drawbacks. The analysis will be followed by a new technique proposed to enhance the speed of the PM technique while the input signal is free of even-order harmonics. The other techniques proposed in this thesis as the novel ones will be compared with the PM technique comprehensively studied in Chapter 2. An algorithm based on the concept of Kalman filtering is proposed in Chapter 3. The algorithm is intended to estimate signal parameters like amplitude, frequency and phase angle in the online mode. The Kalman filter is modified to operate on the output signal of a Finite Impulse Response (FIR) filter designed by a plain summation. The frequency estimation unit is independent from the Kalman filter and uses the samples refined by the FIR filter. The frequency estimated is given to the Kalman filter to be used in building the transition matrices. The initial settings for the modified Kalman filter are obtained through a trial and error exercise. Another algorithm again based on the concept of Kalman filtering is proposed in Chapter 4 for the estimation of signal parameters. The Kalman filter is also modified to operate on the output signal of the same FIR filter explained above. Nevertheless, the frequency estimation unit, unlike the one proposed in Chapter 3, is not segregated and it interacts with the Kalman filter. The frequency estimated is given to the Kalman filter and other parameters such as the amplitudes and phase angles estimated by the Kalman filter is taken to the frequency estimation unit. Chapter 5 proposes another algorithm based on the concept of Kalman filtering. This time, the state parameters are obtained through matrix arrangements where the noise level is reduced on the sample vector. The purified state vector is used to obtain a new measurement vector for a basic Kalman filter applied. The Kalman filter used has similar structure to a basic Kalman filter except the initial settings are computed through an extensive math-work with regards to the matrix arrangement utilized. Chapter 6 proposes another algorithm based on the concept of Kalman filtering similar to that of Chapter 3. However, this time the initial settings required for the better performance of the modified Kalman filter are calculated instead of being guessed by trial and error exercises. The simulations results for the parameters of signal estimated are enhanced due to the correct settings applied. Moreover, an enhanced Least Error Square (LES) technique is proposed to take on the estimation when a critical transient is detected in the input signal. In fact, some large, sudden changes in the parameters of the signal at these critical transients are not very well tracked by Kalman filtering. However, the proposed LES technique is found to be much faster in tracking these changes. Therefore, an appropriate combination of the LES and modified Kalman filtering is proposed in Chapter 6. Also, this time the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 7 proposes the other algorithm based on the concept of Kalman filtering similar to those of Chapter 3 and 6. However, this time an optimal digital filter is designed instead of the simple summation FIR filter. New initial settings for the modified Kalman filter are calculated based on the coefficients of the digital filter applied. Also, the ability of the proposed algorithm is verified on the real data obtained from a prototype test object. Chapter 8 uses the estimation algorithm proposed in Chapter 7 for the interconnection scheme of a DG to power network. Robust estimates of the signal amplitudes and phase angles obtained by the estimation approach are used in the reference generation of the compensation scheme. Several simulation tests provided in this chapter show that the proposed scheme can very well handle the source and load unbalance, load non-linearity, interharmonic distortion, supply voltage distortion, and synchronism of generated currents or voltages. The purposed compensation scheme also prevents distortion in voltage at the point of common coupling in weak source cases, balances the source currents, and makes the supply side power factor a desired value.
Resumo:
Protection of a distribution network in the presence of distributed generators (DGs) using overcurrent relays is a challenging task due to the changes in fault current levels and reverse power flow. Specifically, in the presence of current limited converter interfaced DGs, overcurrent relays may fail to isolate the faulted section either in grid connected or islanded mode of operation. In this paper, a new inverse type relay is presented to protect a distribution network, which may have several DG connections. The new relay characteristic is designed based on the measured admittance of the protected line. The relay is capable of detecting faults under changing fault current levels. The relay performance is evaluated using PSCAD simulation and laboratory experiments.
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cold. An internal heat generation is also considered which is dependent of the fluid temperature. The governing equations are solved numerically by finite element method. The Prandtl number of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number are considered as 0.5 and 105 respectively. The effect of the porosity of the medium and heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.
Resumo:
The Generation Workshop Program 2010, a part of the Queensland Government Unlimited: Designing for the Asia Pacific Event Program, consisted of two one-day intensive design thinking workshops run on October 7-8, 2011 at The Edge, State Library of Queensland, for 100 senior secondary students and 20 secondary teachers self-selected from the subject areas of Visual Art, Graphics and Industrial Technology and Design. Participants were drawn from a database of Brisbane and regional Queensland private and public schools from the goDesign and Living City Workshop Programs. The workshop aimed to facilitate awareness in young people of the role of design in society and the value of design thinking skills in solving complex problems facing the Asia Pacific Region, and to inspire the generation of strategies for our future cities. It also aimed to encourage the collaboration of professional designers with secondary schools to inspire post-secondary pathways and idea generation for education. Inspired by international and national speakers Bunker Roy (Barefoot College) and Hael Kobayashi (Associate Producer on "Happy Feet" film for Australia's Animal Logic), the Unlimited showcase exhibition Make Change: Design Thinking in Action and ‘Idea Starters’/teaching resources provided, students worked with a teacher in ten random teams, to generate optimistic strategies for the Ideal City of tomorrow, each considering a theme – Food, Water, Transport, Ageing, Growth, Employment, Shelter, Health, Education and Energy. Each team of 6 was led by a professional designer (from the discipline of architecture, interior design, industrial design, urban design, graphic design or landscape architecture) who was a catalyst for driving the student creative thinking process. Assisted by illustrators, the teams prepared a visual presentation of their idea from art materials provided. The workshop culminated in a video-taped interactive design chatter to the larger group, which will be utilised as a toolkit and praxis for teachers as part of the State Library of Queensland Design Minds Project. Photos of student design work were published on the Unlimited website.
Resumo:
There is widespread argument that traditional organisations and industries with a predominantly older workforce who are not using computers as an integral part of their work, are unlikely to embrace the opportunities afforded by e-learning. However, the challenge remains to engage a younger generation of learners who seem comfortable learning with technology, whilst not alienating those older learners who may prefer to learn in more traditional ways. This paper analyses data from five case organisations within the Australian rail industry to identify how the potential of e-learning can be realised whilst acknowledging the technological divide between younger and older workers.
Resumo:
This paper examines discussions of Generation Y within higher education discourse, arguing the sector’s use of the term to describe students is misguided for three reasons. First, portraying students as belonging to Generation Y homogenises people undertaking higher education as young, middle-class and technologically literate. Second, speaking of Generation Y students allows constructivism to be reinvented as a ‘new’ learning and teaching philosophy. Third, the Generation Y university student has become a central figure in concerns about technology’s role in learning and teaching. While the notion of the ‘Generation Y student’ creates the illusion that higher education institutions understand their constituents, ultimately, it is of little value in explaining young adults’ educational experiences.
Resumo:
Purpose - Thermo-magnetic convection and heat transfer of paramagnetic fluid placed in a micro-gravity condition (g = 0) and under a uniform vertical gradient magnetic field in an open square cavity with three cold sidewalls have been studied numerically. Design/methodology/approach - This magnetic force is proportional to the magnetic susceptibility and the gradient of the square of the magnetic induction. The magnetic susceptibility is inversely proportional to the absolute temperature based on Curie’s law. Thermal convection of a paramagnetic fluid can therefore take place even in zero-gravity environment as a direct consequence of temperature differences occurring within the fluid due to a constant internal heat generation placed within a magnetic field gradient. Findings - Effects of magnetic Rayleigh number, Ra, Prandtl number, Pr, and paramagnetic fluid parameter, m, on the flow pattern and isotherms as well as on the heat absorption are presented graphically. It is found that the heat transfer rate is suppressed in increased of the magnetic Rayleigh number and the paramagnetic fluid parameter for the present investigation. Originality/value - It is possible to control the buoyancy force by using the super conducting magnet. To the best knowledge of the author no literature related to magnetic convection for this configuration is available.
Resumo:
The objective quantification of three-dimensional kinematics during different functional and occupational tasks is now more in demand than ever. The introduction of new generation of low-cost passive motion capture systems from a number of manufacturers has made this technology accessible for teaching, clinical practice and in small/medium industry. Despite the attractive nature of these systems, their accuracy remains unproved in independent tests. We assessed static linear accuracy, dynamic linear accuracy and compared gait kinematics from a Vicon MX20 system to a Natural Point OptiTrack system. In all experiments data were sampled simultaneously. We identified both systems perform excellently in linear accuracy tests with absolute errors not exceeding 1%. In gait data there was again strong agreement between the two systems in sagittal and coronal plane kinematics. Transverse plane kinematics differed by up to 3 at the knee and hip, which we attributed to the impact of soft tissue artifact accelerations on the data. We suggest that low-cost systems are comparably accurate to their high-end competitors and offer a platform with accuracy acceptable in research for laboratories with a limited budget.
Resumo:
The next-generation of service-oriented architecture (SOA) needs to scale for flexible service consumption, beyond organizational and application boundaries, into communities, ecosystems and business networks. In wider and, ultimately, global settings, new capabilities are needed so that business partners can efficiently and reliably enable, adapt and expose services. Those services can then be discovered, ordered, consumed, metered and paid for, through new applications and opportunities, driven by third-parties in the global “village”. This trend is already underway, in different ways, through different early adopter market segments. This paper proposes an architectural strategy for the provisioning and delivery of services in communities, ecosystems and business networks – a Service Delivery Framework (SDF). The SDF is intended to support multiple industries and deployments where a SOA platform is needed for collaborating partners and diverse consumers. Specifically, it is envisaged that the SDF allows providers to publish their services into network directories so that they can be repurposed, traded and consumed, and leveraging network utilities like B2B gateways and cloud hosting. To support these different facets of service delivery, the SDF extends the conventional service provider, service broker and service consumer of the Web Services Architecture to include service gateway, service hoster, service aggregator and service channel maker.
Resumo:
This paper provides a summary of what is known from social science research about the effects parents have on the donations of their children. It then goes on to summarize two on-going research projects. The first project provides estimates of the strength of the relationship between the charitable giving of parents and that of their adult children. The second provides estimates of the effect of inheritances on charitable donations. Both projects use data from the Center on Philanthropy Panel Study (COPPS); accordingly, the paper provides an introduction to these data. Finally, the paper draws implications for fundraisers from the two on-going projects, and suggests several other areas in which COPPS can generate knowledge to improve the practice of fundraising.
Resumo:
Unsteady natural convection inside a triangular cavity has been studied in this study. The cavity is filled with a saturated porous medium with non-isothermal left inclined wall while the bottom surface is isothermally heated and the right inclined surface is isothermally cooled. An internal heat generation is also considered which is dependent on the fluid temperature. The governing equations are solved numerically by finite volume method. The Prandtl number, Pr of the fluid is considered as 0.7 (air) while the aspect ratio and the Rayleigh number, Ra are considered as 0.5 and 105 respectively. The effect of heat generation on the fluid flow and heat transfer have been presented as a form of streamlines and isotherms. The rate of heat transfer through three surfaces of the enclosure is also presented.
Resumo:
Purpose – The purpose of this paper is to provide description and analysis of how a traditional industry is currently using e-learning, and to identify how the potential of e-learning can be realised whilst acknowledging the technological divide between younger and older workers. Design/methodology/approach – An exploratory qualitative methodology was employed to analyse three key questions: How is the Australian rail industry currently using e-learning? Are there age-related issues with the current use of e-learning in the rail industry? How could e-learning be used in future to engage different generations of learners in the rail industry? Data were collected in five case organisations from across the Australian rail industry. Findings – Of the rail organisations interviewed, none believed they were using e-learning to its full potential. The younger, more technologically literate employees are not having their expectations met and therefore retention of younger workers has become an issue. The challenge for learning and development practitioners is balancing the preferences of an aging workforce with these younger, more “technology-savvy”, learners and the findings highlight some potential ways to begin addressing this balance. Practical implications – The findings identified the potential for organisations (even those in a traditional industry such as rail) to better utilise e-learning to attract and retain younger workers but also warns against making assumptions about technological competency based on age. Originality/value – Data were gathered across an industry, and thus this paper takes an industry approach to considering the potential age-related issues with e-learning and the ways it may be used to meet the needs of different generations in the workplace.
Resumo:
The Teaching Teachers for the Future (TTF) project is a unique nationally significant project funded by the Australian Government through the Department of Employment, Education and Workplace Relations (DEEWR, Au$8.8 million) and the Information and Communication Technology Innovation Fund (ICTIF). This 2011-2012 project has ambitiously attempted to build the ICT education (ICTE) capacity of the next generation of Australian teachers through its focus on pre-service teachers, teacher educators and the new Australian Curriculum. This paper will provide an overview of the project including a description of its genesis in a changing educational and political landscape, its structure and operations, its grounding in contemporary theory, the research opportunities it has engendered and its tangible outcomes.
Resumo:
Findings from an online survey conducted by Queensland University of Technology (QUT) shows that Australia is suffering from a lack of data reflecting trip generation for use in Traffic Impact Assessments (TIAs). Current independent variables for trip generation estimation are not able to create robust outcomes as well. It is also challenging to account for the impact of the new development on public and active transport as well as the effect of trip chaining behaviour in Australian TIA studies. With this background in mind, research is being implemented by QUT to find a new approach developing a combined model of trip generation and mode choice with consideration of trip chaining effects. It is expected that the model will provide transferable outcomes as it is developed based on socio-demographic parameters. Child Care Centres within the Brisbane area have been nominated for model development. At the time, the project is in the data collection phase. Findings from the pilot survey associated with capturing trip chaining and mode choice information reveal that applying questionnaire is able to capture required information in an acceptable level. The result also reveals that several centres within an area should be surveyed in order to provide sufficient data for trip chaining and modal split analysis.