88 resultados para Spatio-temporal dynamics
Resumo:
Management of the industrial nations' hazardous waste is a current and exponentially increasing, global threatening situation. Improved environmental information must be obtained and managed concerning the current status, temporal dynamics and potential future status of these critical sites. To test the application of spatial environmental techniques to the problem of hazardous waste sites, as Superfund (CERCLA) test site was chosen in an industrial/urban valley experiencing severe TCE, PCE, and CTC ground water contamination. A paradigm is presented for investigating spatial/environmental tools available for the mapping, monitoring and modelling of the environment and its toxic contaminated plumes. This model incorporates a range of technical issues concerning the collection of data as augmented by remotely sensed tools, the format and storage of data utilizing geographic information systems, and the analysis and modelling of environment through the use of advance GIS analysis algorithms and geophysic models of hydrologic transport including statistical surface generation. This spatial based approach is evaluated against the current government/industry standards of operations. Advantages and lessons learned of the spatial approach are discussed.
Resumo:
Background Many studies have found associations between climatic conditions and dengue transmission. However, there is a debate about the future impacts of climate change on dengue transmission. This paper reviewed epidemiological evidence on the relationship between climate and dengue with a focus on quantitative methods for assessing the potential impacts of climate change on global dengue transmission. Methods A literature search was conducted in October 2012, using the electronic databases PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search focused on peer-reviewed journal articles published in English from January 1991 through October 2012. Results Sixteen studies met the inclusion criteria and most studies showed that the transmission of dengue is highly sensitive to climatic conditions, especially temperature, rainfall and relative humidity. Studies on the potential impacts of climate change on dengue indicate increased climatic suitability for transmission and an expansion of the geographic regions at risk during this century. A variety of quantitative modelling approaches were used in the studies. Several key methodological issues and current knowledge gaps were identified through this review. Conclusions It is important to assemble spatio-temporal patterns of dengue transmission compatible with long-term data on climate and other socio-ecological changes and this would advance projections of dengue risks associated with climate change. Keywords: Climate; Dengue; Models; Projection; Scenarios
Resumo:
The formation of vapor layers around an electrode immersed in a conducting liquid prior to generation of a plasma discharge is studied using numerical simulations. This study quantifies and explains the effects of the electrode geometry and applied voltage pulses, as well as the electrical and thermal properties of the liquids on the temporal dynamics of the pre-breakdown conditions in the vapor layer. This model agrees well with experimental data, in particular, the time needed to reach the electrical breakdown threshold. Because the time needed for discharge ignition can be accurately predicted from the model, the parameters such as the pulse shape, voltage, and electrode configuration can be optimized under different liquid conditions, which facilitates a faster and more energy-efficient plasma generation.
Resumo:
Computational models in physiology often integrate functional and structural information from a large range of spatio-temporal scales from the ionic to the whole organ level. Their sophistication raises both expectations and scepticism concerning how computational methods can improve our understanding of living organisms and also how they can reduce, replace and refine animal experiments. A fundamental requirement to fulfil these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present study aims at informing strategies for validation by elucidating the complex interrelations between experiments, models and simulations in cardiac electrophysiology. We describe the processes, data and knowledge involved in the construction of whole ventricular multiscale models of cardiac electrophysiology. Our analysis reveals that models, simulations, and experiments are intertwined, in an assemblage that is a system itself, namely the model-simulation-experiment (MSE) system. Validation must therefore take into account the complex interplay between models, simulations and experiments. Key points for developing strategies for validation are: 1) understanding sources of bio-variability is crucial to the comparison between simulation and experimental results; 2) robustness of techniques and tools is a pre-requisite to conducting physiological investigations using the MSE system; 3) definition and adoption of standards facilitates interoperability of experiments, models and simulations; 4) physiological validation must be understood as an iterative process that defines the specific aspects of electrophysiology the MSE system targets, and is driven by advancements in experimental and computational methods and the combination of both.
Resumo:
Given the drawbacks for using geo-political areas in mapping outcomes unrelated to geo-politics, a compromise is to aggregate and analyse data at the grid level. This has the advantage of allowing spatial smoothing and modelling at a biologically or physically relevant scale. This article addresses two consequent issues: the choice of the spatial smoothness prior and the scale of the grid. Firstly, we describe several spatial smoothness priors applicable for grid data and discuss the contexts in which these priors can be employed based on different aims. Two such aims are considered, i.e., to identify regions with clustering and to model spatial dependence in the data. Secondly, the choice of the grid size is shown to depend largely on the spatial patterns. We present a guide on the selection of spatial scales and smoothness priors for various point patterns based on the two aims for spatial smoothing.
Resumo:
Barmah Forest virus (BFV) disease is an emerging mosquito-borne disease in Australia. We aimed to outline some recent methods in using GIS for the analysis of BFV disease in Queensland, Australia. A large database of geocoded BFV cases has been established in conjunction with population data. The database has been used in recently published studies conducted by the authors to determine spatio-temporal BFV disease hotspots and spatial patterns using spatial autocorrelation and semi-variogram analysis in conjunction with the development of interpolated BFV disease standardised incidence maps. This paper briefly outlines spatial analysis methodologies using GIS tools used in those studies. This paper summarises methods and results from previous studies by the authors, and presents a GIS methodology to be used in future spatial analytical studies in attempt to enhance the understanding of BFV disease in Queensland. The methodology developed is useful in improving the analysis of BFV disease data and will enhance the understanding of the BFV disease distribution in Queensland, Australia.
Resumo:
To the trained-eye, experts can often identify a team based on their unique style of play due to their movement, passing and interactions. In this paper, we present a method which can accurately determine the identity of a team from spatiotemporal player tracking data. We do this by utilizing a formation descriptor which is found by minimizing the entropy of role-specific occupancy maps. We show how our approach is significantly better at identifying different teams compared to standard measures (i.e., shots, passes etc.). We demonstrate the utility of our approach using an entire season of Prozone player tracking data from a top-tier professional soccer league.
Resumo:
Mapping the Unmappable? the Choreography Shared Material on Dying through the Lens of the Technogenetic Dancer. If choreographic movement is a trace, which is already behind at the moment of its appearance, the impulses that move the dancer could be understood to reside in the virtual. Whether they are the internalized instructions of the choreographer, the inscriptions of concepts on the dancing body which shape how the dancer moves, or movement material that has been incorporated over time, this gestalt is somewhat mapped before is materialized. Erin Manning describes the moment before it manifests as the preacceleration of the movement, when the potentialities of the gesture collapse and stabilize into form. This form is transient, appearing as a trace that is dissolving as soon as it appears. In her critique of some approaches to collaborations between dance and technology she describes technology as a prosthetic that constrains the dancer's movement by inducing this collapse into stability and thus limiting the potentiality of the technogenetic body of the dancer. Thus the technology becomes the focus rather than the sophisticated sensorial skills of the dancer in movement. Using this challenge as a provocation, I have explored methods for mapping a choreographed phrase of movement from the piece entitled Shared Material on Dying by Irish choreographer, Liz Roche. I will explore the virtual space before this dance is materialized, through the frame of a technogenetic body. I will uncover, through phenomenological enquiry, the constituent elements that are embedded in this virtual map, that is, the associations, sensations and spatio-temporal reference points that have been incorporated over time. The purpose is to point to possible directions in mapping the virtual dance space and to understand choreographed movements not just in terms of their material trace but also in terms of the associations, sensations and perceptions that give a specific choreography its identity. This undertaking has relevance for archiving dance. This presentation will involve danced choreography alongside documented material to explore multiple perspectives on the piece and the experience of dancing it.
Resumo:
While the neural regions associated with facial identity recognition are considered to be well defined, the neural correlates of non-moving and moving images of facial emotion processing are less clear. This study examined the brain electrical activity changes in 26 participants (14 males M = 21.64, SD = 3.99; 12 females M = 24.42, SD = 4.36), during a passive face viewing task, a scrambled face task and separate emotion and gender face discrimination tasks. The steady state visual evoked potential (SSVEP) was recorded from 64-electrode sites. Consistent with previous research, face related activity was evidenced at scalp regions over the parieto-temporal region approximately 170 ms after stimulus presentation. Results also identified different SSVEP spatio-temporal changes associated with the processing of static and dynamic facial emotions with respect to gender, with static stimuli predominately associated with an increase in inhibitory processing within the frontal region. Dynamic facial emotions were associated with changes in SSVEP response within the temporal region, which are proposed to index inhibitory processing. It is suggested that static images represent non-canonical stimuli which are processed via different mechanisms to their more ecologically valid dynamic counterparts.
Resumo:
Recently, attempts to improve decision making in species management have focussed on uncertainties associated with modelling temporal fluctuations in populations. Reducing model uncertainty is challenging; while larger samples improve estimation of species trajectories and reduce statistical errors, they typically amplify variability in observed trajectories. In particular, traditional modelling approaches aimed at estimating population trajectories usually do not account well for nonlinearities and uncertainties associated with multi-scale observations characteristic of large spatio-temporal surveys. We present a Bayesian semi-parametric hierarchical model for simultaneously quantifying uncertainties associated with model structure and parameters, and scale-specific variability over time. We estimate uncertainty across a four-tiered spatial hierarchy of coral cover from the Great Barrier Reef. Coral variability is well described; however, our results show that, in the absence of additional model specifications, conclusions regarding coral trajectories become highly uncertain when considering multiple reefs, suggesting that management should focus more at the scale of individual reefs. The approach presented facilitates the description and estimation of population trajectories and associated uncertainties when variability cannot be attributed to specific causes and origins. We argue that our model can unlock value contained in large-scale datasets, provide guidance for understanding sources of uncertainty, and support better informed decision making
Resumo:
Oscillations of neural activity may bind widespread cortical areas into a neural representation that encodes disparate aspects of an event. In order to test this theory we have turned to data collected from complex partial epilepsy (CPE) patients with chronically implanted depth electrodes. Data from regions critical to word and face information processing was analyzed using spectral coherence measurements. Similar analyses of intracranial EEG (iEEG) during seizure episodes display HippoCampal Formation (HCF)—NeoCortical (NC) spectral coherence patterns that are characteristic of specific seizure stages (Klopp et al. 1996). We are now building a computational memory model to examine whether spatio-temporal patterns of human iEEG spectral coherence emerge in a computer simulation of HCF cellular distribution, membrane physiology and synaptic connectivity. Once the model is reasonably scaled it will be used as a tool to explore neural parameters that are critical to memory formation and epileptogenesis.
Resumo:
Due to their unobtrusive nature, vision-based approaches to tracking sports players have been preferred over wearable sensors as they do not require the players to be instrumented for each match. Unfortunately however, due to the heavy occlusion between players, variation in resolution and pose, in addition to fluctuating illumination conditions, tracking players continuously is still an unsolved vision problem. For tasks like clustering and retrieval, having noisy data (i.e. missing and false player detections) is problematic as it generates discontinuities in the input data stream. One method of circumventing this issue is to use an occupancy map, where the field is discretised into a series of zones and a count of player detections in each zone is obtained. A series of frames can then be concatenated to represent a set-play or example of team behaviour. A problem with this approach though is that the compressibility is low (i.e. the variability in the feature space is incredibly high). In this paper, we propose the use of a bilinear spatiotemporal basis model using a role representation to clean-up the noisy detections which operates in a low-dimensional space. To evaluate our approach, we used a fully instrumented field-hockey pitch with 8 fixed high-definition (HD) cameras and evaluated our approach on approximately 200,000 frames of data from a state-of-the-art real-time player detector and compare it to manually labeled data.
Resumo:
Local spatio-temporal features with a Bag-of-visual words model is a popular approach used in human action recognition. Bag-of-features methods suffer from several challenges such as extracting appropriate appearance and motion features from videos, converting extracted features appropriate for classification and designing a suitable classification framework. In this paper we address the problem of efficiently representing the extracted features for classification to improve the overall performance. We introduce two generative supervised topic models, maximum entropy discrimination LDA (MedLDA) and class- specific simplex LDA (css-LDA), to encode the raw features suitable for discriminative SVM based classification. Unsupervised LDA models disconnect topic discovery from the classification task, hence yield poor results compared to the baseline Bag-of-words framework. On the other hand supervised LDA techniques learn the topic structure by considering the class labels and improve the recognition accuracy significantly. MedLDA maximizes likelihood and within class margins using max-margin techniques and yields a sparse highly discriminative topic structure; while in css-LDA separate class specific topics are learned instead of common set of topics across the entire dataset. In our representation first topics are learned and then each video is represented as a topic proportion vector, i.e. it can be comparable to a histogram of topics. Finally SVM classification is done on the learned topic proportion vector. We demonstrate the efficiency of the above two representation techniques through the experiments carried out in two popular datasets. Experimental results demonstrate significantly improved performance compared to the baseline Bag-of-features framework which uses kmeans to construct histogram of words from the feature vectors.
Resumo:
The processes of studio-based teaching in visual art are often still tied to traditional models of discrete disciplines and largely immersed in skill-based learning. These approaches to training artists are also tied to an individual model of art practice that is clearly defined by the boundaries of those disciplines. This paper will explain how the open studio program at QUT can be broadly understood as an action research model of learning that ‘plays’ with the post-medium, post-studio genealogies and zones of contemporary art. This emphasises developing conceptual, contextual and formal skills as essential for engaging with and practicing in the often-indeterminate spatio-temporal sites of studio teaching. It will explore how this approach looks to Sutton-Smith’s observations on the role of play and Vygotsky’s zone of proximal development in early childhood learning as a way to develop strategies for promoting creative learning environments that are collaborative and self sustainable. Social, cultural, political and philosophical dialogues are examined as they relate to art practice with the aim of forming the shared interests, aims, and ambitions of graduating students into self initiated collectives or ARIs.
Resumo:
Typically, the walking ability of individuals with a transfemoral amputation (TFA) can be represented by the speed of walking (SofW) obtained in experimental settings. Recent developments in portable kinetic systems allow assessing the level of activity of TFA during actual daily living outside the confined space of a gait lab. Unfortunately, only minimal spatio-temporal characteristics could be extracted from the kinetic data including the cadence and the duration on gait cycles. Therefore, there is a need for a way to use some of these characteristics to assess the instantaneous speed of walking during daily living. The purpose of the study was to compare several methods to determine SofW using minimal spatial gait characteristics.