93 resultados para Soil Pollution--Analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of environmental justice is well developed in North America, but is still at the evolutionary stage in most other jurisdictions around the globe. This paper seeks to explore two jurisdictions where incidents of environmental justice are likely to be seen in the future as a result of manufacturing and mining practices. The discussion will centre upon avenues to environmental justice for both private citizens and the public at large. The first jurisdiction considered is China, where environmental liability claims brought by Chinese citizens have increased at an annual average of 25% (Yang 2011). Manufacturing is at the core of the Chinese economy and is responsible for some of the unprecedented economic growth in the region. Less discussed are the industry impacts on water and air pollution levels and the associated implications of these pollutants on local communities. China introduced the Tort Liability Law (TLL) in 2010, which may provide avenues to justice for private citizens. The other jurisdiction considered by the paper is Australia, where the mining boom has buffered the Australian economy from the global financial crisis. There is some limited case law in Australia where private citizens have made a claim in toxic torts; however the framework is underdeveloped in terms of the significant risks facing indigenous and local communities in mining areas and also by comparison to the developments of the TLL framework in China. This paper traces the regulatory responses to the affects of major industries on communities in China and Australia. From this it examines the need for environmental justice avenues that align with rule of law principles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effectiveness of structural elements employed for stormwater mitigation such as bioretention basins and constructed wetlands depend on the compatibility between their design specifications and actual stormwater quality and quantity characteristics. These structural elements are commonly designed to accommodate the initial portion of runoff considering the occurrence of first flush. Therefore, the effectiveness of stormwater quality treatment primarily depends on the in-depth knowledge of the first flush phenomenon and the ability to provide appropriate treatment. The current scientific knowledge relating to first flush is limited primarily due to research investigations being undertaken based on lumped rainfall and runoff parameters. This paper presents the outcomes of an in-depth study undertaken of the first flush phenomenon using a set of indicators which are not only innovative, but is also able to accurately represent the characteristics of the different sectors in a runoff hydrograph. The analysis undertaken confirmed that pollutant wash-off during the initial 10% of runoff volume was critical for the occurrence of first flush. Typically first flush was found to last up to 40% of the runoff volume. The study outcomes provide new knowledge to enhance the effectiveness of structural stormwater treatment measures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The early warning based on real-time prediction of rain-induced instability of natural residual slopes helps to minimise human casualties due to such slope failures. Slope instability prediction is complicated, as it is influenced by many factors, including soil properties, soil behaviour, slope geometry, and the location and size of deep cracks in the slope. These deep cracks can facilitate rainwater infiltration into the deep soil layers and reduce the unsaturated shear strength of residual soil. Subsequently, it can form a slip surface, triggering a landslide even in partially saturated soil slopes. Although past research has shown the effects of surface-cracks on soil stability, research examining the influence of deep-cracks on soil stability is very limited. This study aimed to develop methodologies for predicting the real-time rain-induced instability of natural residual soil slopes with deep cracks. The results can be used to warn against potential rain-induced slope failures. The literature review conducted on rain induced slope instability of unsaturated residual soil associated with soil crack, reveals that only limited studies have been done in the following areas related to this topic: - Methods for detecting deep cracks in residual soil slopes. - Practical application of unsaturated soil theory in slope stability analysis. - Mechanistic methods for real-time prediction of rain induced residual soil slope instability in critical slopes with deep cracks. Two natural residual soil slopes at Jombok Village, Ngantang City, Indonesia, which are located near a residential area, were investigated to obtain the parameters required for the stability analysis of the slope. A survey first identified all related field geometrical information including slope, roads, rivers, buildings, and boundaries of the slope. Second, the electrical resistivity tomography (ERT) method was used on the slope to identify the location and geometrical characteristics of deep cracks. The two ERT array models employed in this research are: Dipole-dipole and Azimuthal. Next, bore-hole tests were conducted at different locations in the slope to identify soil layers and to collect undisturbed soil samples for laboratory measurement of the soil parameters required for the stability analysis. At the same bore hole locations, Standard Penetration Test (SPT) was undertaken. Undisturbed soil samples taken from the bore-holes were tested in a laboratory to determine the variation of the following soil properties with the depth: - Classification and physical properties such as grain size distribution, atterberg limits, water content, dry density and specific gravity. - Saturated and unsaturated shear strength properties using direct shear apparatus. - Soil water characteristic curves (SWCC) using filter paper method. - Saturated hydraulic conductivity. The following three methods were used to detect and simulate the location and orientation of cracks in the investigated slope: (1) The electrical resistivity distribution of sub-soil obtained from ERT. (2) The profile of classification and physical properties of the soil, based on laboratory testing of soil samples collected from bore-holes and visual observations of the cracks on the slope surface. (3) The results of stress distribution obtained from 2D dynamic analysis of the slope using QUAKE/W software, together with the laboratory measured soil parameters and earthquake records of the area. It was assumed that the deep crack in the slope under investigation was generated by earthquakes. A good agreement was obtained when comparing the location and the orientation of the cracks detected by Method-1 and Method-2. However, the simulated cracks in Method-3 were not in good agreement with the output of Method-1 and Method-2. This may have been due to the material properties used and the assumptions made, for the analysis. From Method-1 and Method-2, it can be concluded that the ERT method can be used to detect the location and orientation of a crack in a soil slope, when the ERT is conducted in very dry or very wet soil conditions. In this study, the cracks detected by the ERT were used for stability analysis of the slope. The stability of the slope was determined using the factor of safety (FOS) of a critical slip surface obtained by SLOPE/W using the limit equilibrium method. Pore-water pressure values for the stability analysis were obtained by coupling the transient seepage analysis of the slope using finite element based software, called SEEP/W. A parametric study conducted on the stability of an investigated slope revealed that the existence of deep cracks and their location in the soil slope are critical for its stability. The following two steps are proposed to predict the rain-induced instability of a residual soil slope with cracks. (a) Step-1: The transient stability analysis of the slope is conducted from the date of the investigation (initial conditions are based on the investigation) to the preferred date (current date), using measured rainfall data. Then, the stability analyses are continued for the next 12 months using the predicted annual rainfall that will be based on the previous five years rainfall data for the area. (b) Step-2: The stability of the slope is calculated in real-time using real-time measured rainfall. In this calculation, rainfall is predicted for the next hour or 24 hours and the stability of the slope is calculated one hour or 24 hours in advance using real time rainfall data. If Step-1 analysis shows critical stability for the forthcoming year, it is recommended that Step-2 be used for more accurate warning against the future failure of the slope. In this research, the results of the application of the Step-1 on an investigated slope (Slope-1) showed that its stability was not approaching a critical value for year 2012 (until 31st December 2012) and therefore, the application of Step-2 was not necessary for the year 2012. A case study (Slope-2) was used to verify the applicability of the complete proposed predictive method. A landslide event at Slope-2 occurred on 31st October 2010. The transient seepage and stability analyses of the slope using data obtained from field tests such as Bore-hole, SPT, ERT and Laboratory tests, were conducted on 12th June 2010 following the Step-1 and found that the slope in critical condition on that current date. It was then showing that the application of the Step-2 could have predicted this failure by giving sufficient warning time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite of significant contributions of urban road transport to global economy and society, it is one of the largest sources of local and global emission impact. In order to address the environmental concerns of urban road transport it is imperative to achieve a holistic understanding of contributory factors causing emissions which requires a complete look onto its whole life cycle. Previous studies were mainly based on segmental views which mostly studied environmental impacts of individual transport modes and very few considered impacts other than operational phase. This study develops an integrated life cycle inventory model for urban road transport emissions from a holistic modal perspective. Singapore case was used to demonstrate the model. Results show that total life cycle greenhouse gas emission from Singapore’s road transport sector is 7.8 million tons per year. The total amount of criteria air pollutants are also estimated in this study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nitrous oxide (N2O) is one of the greenhouse gases that can contribute to global warming. Spatial variability of N2O can lead to large uncertainties in prediction. However, previous studies have often ignored the spatial dependency to quantify the N2O - environmental factors relationships. Few researches have examined the impacts of various spatial correlation structures (e.g. independence, distance-based and neighbourhood based) on spatial prediction of N2O emissions. This study aimed to assess the impact of three spatial correlation structures on spatial predictions and calibrate the spatial prediction using Bayesian model averaging (BMA) based on replicated, irregular point-referenced data. The data were measured in 17 chambers randomly placed across a 271 m(2) field between October 2007 and September 2008 in the southeast of Australia. We used a Bayesian geostatistical model and a Bayesian spatial conditional autoregressive (CAR) model to investigate and accommodate spatial dependency, and to estimate the effects of environmental variables on N2O emissions across the study site. We compared these with a Bayesian regression model with independent errors. The three approaches resulted in different derived maps of spatial prediction of N2O emissions. We found that incorporating spatial dependency in the model not only substantially improved predictions of N2O emission from soil, but also better quantified uncertainties of soil parameters in the study. The hybrid model structure obtained by BMA improved the accuracy of spatial prediction of N2O emissions across this study region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the response of pile foundations to ground shocks induced by surface explosion using fully coupled and non-linear dynamic computer simulation techniques together with different material models for the explosive, air, soil and pile. It uses the Arbitrary Lagrange Euler coupling formulation with proper state material parameters and equations. Blast wave propagation in soil, horizontal pile deformation and pile damage are presented to facilitate failure evaluation of piles. Effects of end restraint of pile head and the number and spacing of piles within a group on their blast response and potential failure are investigated. The techniques developed and applied in this paper and its findings provide valuable information on the blast response and failure evaluation of piles and will provide guidance in their future analysis and design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ground-penetrating radar (GPR) is widely used for assessment of soil moisture variability in field soils. Because GPR does not measure soil water content directly, it is common practice to use calibration functions that describe its relationship with the soil dielectric properties and textural parameters. However, the large variety of models complicates the selection of the appropriate function. In this article an overview is presented of the different functions available, including volumetric models, empirical functions, effective medium theories, and frequency-specific functions. Using detailed information presented in summary tables, the choice for which calibration function to use can be guided by the soil variables available to the user, the frequency of the GPR equipment, and the desired level of detail of the output. This article can thus serve as a guide for GPR practitioners to obtain soil moisture values and to estimate soil dielectric properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of acid rock drainage (ARD) and eutrophication on microbial communities in stream sediments above and below an abandoned mine site in the Adelaide Hills, South Australia, was quantified by PLFA analysis. Multivariate analysis of water quality parameters, including anions, soluble heavy metals, pH, and conductivity, as well as total extractable metal concentrations in sediments, produced clustering of sample sites into three distinct groups. These groups corresponded with levels of nutrient enrichment and/or concentration of pollutants associated with ARD. Total PLFA concentration, which is indicative of microbial biomass, was reduced by >70% at sites along the stream between the mine site and as far as 18 km downstream. Further downstream, however, recovery of the microbial abundance was apparent, possibly reflecting dilution effect by downstream tributaries. Total PLFA was >40% higher at, and immediately below, the mine site (0-0.1 km), compared with sites further downstream (2.5-18 km), even after accounting for differences in specific surface area of different sediment samples. The increased microbial population in the proximity of the mine source may be associated with the presence of a thriving iron-oxidizing bacteria community as a consequence of optimal conditions for these organisms while the lower microbial population further downstream corresponded with greater sediments' metal concentrations. PCA of relative abundance revealed a number of PLFAs which were most influential in discriminating between ARD-polluted sites and the rest of the sites. These PLFA included the hydroxy fatty acids: 2OH12:0, 3OH12:0, 2OH16:0; the fungal marker: 18:2ω6; the sulfate-reducing bacteria marker 10Me16:1ω7; and the saturated fatty acids 12:0, 16:0, 18:0. Partial constrained ordination revealed that the environmental parameters with the greatest bearing on the PLFA profiles included pH, soluble aluminum, total extractable iron, and zinc. The study demonstrated the successful application of PLFA analysis to rapidly assess the toxicity of ARD-affected waters and sediments and to differentiate this response from the effects of other pollutants, such as increased nutrients and salinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of a change of tillage and crop residue management practice on the chemical and micro-biological properties of a cereal-producing red duplex soil was investigated by superimposing each of three management practices (CC: conventional cultivation, stubble burnt, crop conventionally sown; DD: direct-drilling, stubble retained, no cultivation, crop direct-drilled; SI: stubble incorporated with a single cultivation, crop conventionally sown), for a 3-year period on plots previously managed with each of the same three practices for 14 years. A change from DD to CC or SI practice resulted in a significant decline, in the top 0-5 cm of soil, in organic C, total N, electrical conductivity, NH4-N, NO3-N, soil moisture holding capacity, microbial biomass and CO2 respiration as well as a decline in the microbial quotient (the ratio of microbial biomass C to organic C; P <0.05). In contrast, a change from SI to DD or CC practice or a change from CC to DD or SI practice had only negligible impact on soil chemical properties (P >0.05). However, there was a significant increase in microbial biomass and the microbial quotient in the top 0-5 cm of soil following the change from CC to DD or SI practice and with the change from SI to DD practice (P <0.05). Analysis of ester-linked fatty acid methyl esters (EL-FAMEs) extracted from the 0- to 5-cm and 5- to 10-cm layers of the soils of the various treatments detected changes in the FAME profiles following a change in tillage practice. A change from DD practice to SI or CC practice was associated with a significant decline in the ratio of fungal to bacterial fatty acids in the 0- to 5-cm soil (P <0.05). The results show that a change in tillage practice, particularly the cultivation of a previously minimum-tilled (direct-drilled) soil, will result in significant changes in soil chemical and microbiological properties within a 3-year period. They also show that soil microbiological properties are sensitive indicators of a change in tillage practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential settlement at the bridge approach between the deck and rail track on ground is often considered as a source of challenging technical and economical problem. This caused by the sudden stiffness changes between the bridge deck and the track on ground, and changes in soil stiffness of backfill and sub-grade with soil moisture content and loading history. To minimise the negative social and economic impacts due to poor performances of railway tracks at bridge transition zones, it is important, a special attention to be given at design, construction and maintenance stages. It is critically challenging to obtain an appropriate design solution for any given site condition and most of the existing conventional design approaches are unable to address the actual on-site behaviour due to their inherent assumptions of continuity and lack of clarifying of the local effects. An evaluation of existing design techniques is considered to estimate their contributions to a potential solution for bridge transition zones. This paper analyses five different approaches: the Chinese Standard, the European Standard with three different approaches, and the Australian approach. Each design approach is used to calculate the layer thicknesses, accounting critical design features such as the train speed, the axle load, the backfill subgrade condition, and the dynamic loading response. Considering correlation between track degradation and design parameters, this paper concludes that there is still a need of an optimised design approach for bridge transition zones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A measure quantifying unequal use of carbon sources, the Gini coefficient (G), has been developed to allow comparisons of the observed functional diversity of bacterial soil communities. This approach was applied to the analysis of substrate utilisation data obtained from using BIOLOG microtiter plates in a study which compared decomposition processes in two contrasting plant substrates in two different soils. The relevance of applying the Gini coefficient as a measure of observed functional diversity, for soil bacterial communities is evaluated against the Shannon index (H) and average well colour development (AWCD), a measure of the total microbial activity. Correlation analysis and analysis of variance of the experimental data show that the Gini coefficient, the Shannon index and AWCD provided similar information when used in isolation. However, analyses based on the Gini coefficient and the Shannon index, when total activity on the microtiter plates was maintained constant (i.e. AWCD as a covariate), indicate that additional information about the distribution of carbon sources being utilised can be obtained. We demonstrate that the Lorenz curve and its measure of inequality, the Gini coefficient, provides not only comparable information to AWCD and the Shannon index but when used together with AWCD encompasses measures of total microbial activity and absorbance inequality across all the carbon sources. This information is especially relevant for comparing the observed functional diversity of soil microbial communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fatty acid methyl ester (FAME) profiles, together with Biolog substrate utilization patterns, were used in conjunction with measurements of other soil chemical and microbiological properties to describe differences in soil microbial communities induced by increased salinity and alkalinity in grass/legume pastures at three sites in SE South Australia. Total ester-linked FAMEs (EL-FAMEs) and phospholipid-linked FAMEs (PL-FAMEs), were also compared for their ability to detect differences between the soil microbial communities. The level of salinity and alkalinity in affected areas of the pastures showed seasonal variation, being greater in summer than in winter. At the time of sampling for the chemical and microbiological measurements (winter) only the affected soil at site 1 was significantly saline. The affected soils at all three sites had lower organic C and total N concentrations than the corresponding non-affected soils. At site 1 microbial biomass, CO 2-C respiration and the rate of cellulose decomposition was also lower in the affected soil compared to the non-affected soil. Biomarker fatty acids present in both the EL- and PL-FAME profiles indicated a lower ratio of fungal to bacterial fatty acids in the saline affected soil at site 1. Analysis of Biolog substrate utilization patterns indicated that the bacterial community in the affected soil at site 1 utilized fewer carbon substrates and had lower functional diversity than the corresponding community in the non-affected soil. In contrast, increased alkalinity, of major importance at sites 2 and 3, had no effect on microbial biomass, the rate of cellulose decomposition or functional diversity but was associated with significant differences in the relative amounts of several fatty acids in the PL-FAME profiles indicative of a shift towards a bacterial dominated community. Despite differences in the number and relative amounts of fatty acids detected, principal component analysis of the EL- and PL-FAME profiles were equally capable of separating the affected and non-affected soils at all three sites. Redundancy analysis of the FAME data showed that organic C, microbial biomass, electrical conductivity and bicarbonate-extractable P were significantly correlated with variation in the EL-FAME profiles, whereas pH, electrical conductivity, NH 4-N, CO 2-C respiration and the microbial quotient were significantly correlated with variation in the PL-FAME profiles. Redundancy analysis of the Biolog data indicated that cation exchange capacity and bicarbonate-extractable K were significantly correlated with the variation in Biolog substrate utilization patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper develops and presents a fully coupled non-linear finite element procedure to treat the response of piles to ground shocks induced by underground explosions. The Arbitrary Lagrange Euler coupling formulation with proper state material parameters and equations are used in the study. Pile responses in four different soil types, viz, saturated soil, partially saturated soil and loose and dense dry soils are investigated and the results compared. Numerical results are validated by comparing with those from a standard design manual. Blast wave propagation in soils, horizontal pile deformations and damages in the pile are presented. The pile damage presented through plastic strain diagrams will enable the vulnerability assessment of the piles under the blast scenarios considered. The numerical results indicate that the blast performance of the piles embedded in saturated soil and loose dry soil are more severe than those in piles embedded in partially saturated soil and dense dry soil. Present findings should serve as a benchmark reference for future analysis and design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corporate social responsibility is imperative for manufacturing companies to achieve sustainable development. Under a strong environmental information disclosure system, polluting companies are disadvantaged in terms of market competitiveness, because they lack an environmentally friendly image. The objective of this study is to analyze productive inefficiency change in relation to toxic chemical substance emissions for the United States and Japan and their corresponding policies. We apply the weighted Russell directional distance model to measure companies productive inefficiency, which represents their production technology. The data encompass 330 US manufacturing firms observed from 1999 to 2007, and 466 Japanese manufacturing firms observed from 2001 to 2008. The article focuses on nine high-pollution industries (rubber and plastics; chemicals and allied products; paper and pulp; steel and non-ferrous metal; fabricated metal; industrial machinery; electrical products; transportation equipment; precision instruments) categorized into two industry groups: basic materials industries and processing and assembly industries. The results show that productive inefficiency decreased in all industrial sectors in the United States and Japan from 2001 to 2007. In particular, that of the electrical products industry decreased rapidly after 2002 for both countries, possibly because of the enforcement of strict environmental regulations for electrical products exported to European markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of China's extremely rapid economic growth, the scale and seriousness of environmental problems is no longer in doubt. Whether pollution abatement technologies are utilized more efficiently is crucial in the analysis of environmental management in China. This study analyzes how the performance of environmental management has changed over time using province level data for 1992-2003. Mixed results for environmental performance are shown using nonparametric estimation technique. We find that environmental performance index, abatement effort, and increasing returns to pollution abatement play important roles in determining the pollution level over the period of the study.