100 resultados para Signal analysis
Resumo:
Time-varying bispectra, computed using a classical sliding window short-time Fourier approach, are analyzed for scalp EEG potentials evoked by an auditory stimulus and new observations are presented. A single, short duration tone is presented from the left or the right, direction unknown to the test subject. The subject responds by moving the eyes to the direction of the sound. EEG epochs sampled at 200 Hz for repeated trials are processed between -70 ms and +1200 ms with reference to the stimulus. It is observed that for an ensemble of correctly recognized cases, the best matching timevarying bispectra at (8 Hz, 8Hz) are for PZ-FZ channels and this is also largely the case for grand averages but not for power spectra at 8 Hz. Out of 11 subjects, the only exception for time-varying bispectral match was a subject with family history of Alzheimer’s disease and the difference was in bicoherence, not biphase.
Resumo:
Modelling activities in crowded scenes is very challenging as object tracking is not robust in complicated scenes and optical flow does not capture long range motion. We propose a novel approach to analyse activities in crowded scenes using a “bag of particle trajectories”. Particle trajectories are extracted from foreground regions within short video clips using particle video, which estimates long range motion in contrast to optical flow which is only concerned with inter-frame motion. Our applications include temporal video segmentation and anomaly detection, and we perform our evaluation on several real-world datasets containing complicated scenes. We show that our approaches achieve state-of-the-art performance for both tasks.
Resumo:
Denaturation of tissues can provide a unique biological environment for regenerative medicine application only if minimal disruption of their microarchitecture is achieved during the decellularization process. The goal is to keep the structural integrity of such a construct as functional as the tissues from which they were derived. In this work, cartilage-on-bone laminates were decellularized through enzymatic, non-ionic and ionic protocols. This work investigated the effects of decellularization process on the microarchitecture of cartiligous extracellular matrix; determining the extent of how each process deteriorated the structural organization of the network. High resolution microscopy was used to capture cross-sectional images of samples prior to and after treatment. The variation of the microarchitecture was then analysed using a well defined fast Fourier image processing algorithm. Statistical analysis of the results revealed how significant the alternations among aforementioned protocols were (p < 0.05). Ranking the treatments by their effectiveness in disrupting the ECM integrity, they were ordered as: Trypsin> SDS> Triton X-100.
Resumo:
Tissue-specific extracellular matrix (ECM) is known to be an ideal bioscaffold to inspire the future of regenerative medicine. It holds the secret of how nature has developed such an organization of molecules into a unique functional complexity. This work exploited an innovative image processing algorithm and high resolution microscopy associated with mechanical analysis to establish a correlation between the gradient organization of cartiligous ECM and its anisotropic biomechanical response. This was hypothesized to be a reliable determinant that can elucidate how microarchitecture interrelates with biomechanical properties. Hough-Radon transform of the ECM cross-section images revealed its conformational variation from tangential interface down to subchondral region. As the orientation varied layer by layer, the anisotropic mechanical response deviated relatively. Although, results were in good agreement (Kendall's tau-b > 90%), there were evidences proposing that alignment of the fibrous network, specifically in middle zone, is not as random as it was previously thought.
Resumo:
Structural health monitoring (SHM) refers to the procedure used to assess the condition of structures so that their performance can be monitored and any damage can be detected early. Early detection of damage and appropriate retrofitting will aid in preventing failure of the structure and save money spent on maintenance or replacement and ensure the structure operates safely and efficiently during its whole intended life. Though visual inspection and other techniques such as vibration based ones are available for SHM of structures such as bridges, the use of acoustic emission (AE) technique is an attractive option and is increasing in use. AE waves are high frequency stress waves generated by rapid release of energy from localised sources within a material, such as crack initiation and growth. AE technique involves recording these waves by means of sensors attached on the surface and then analysing the signals to extract information about the nature of the source. High sensitivity to crack growth, ability to locate source, passive nature (no need to supply energy from outside, but energy from damage source itself is utilised) and possibility to perform real time monitoring (detecting crack as it occurs or grows) are some of the attractive features of AE technique. In spite of these advantages, challenges still exist in using AE technique for monitoring applications, especially in the area of analysis of recorded AE data, as large volumes of data are usually generated during monitoring. The need for effective data analysis can be linked with three main aims of monitoring: (a) accurately locating the source of damage; (b) identifying and discriminating signals from different sources of acoustic emission and (c) quantifying the level of damage of AE source for severity assessment. In AE technique, the location of the emission source is usually calculated using the times of arrival and velocities of the AE signals recorded by a number of sensors. But complications arise as AE waves can travel in a structure in a number of different modes that have different velocities and frequencies. Hence, to accurately locate a source it is necessary to identify the modes recorded by the sensors. This study has proposed and tested the use of time-frequency analysis tools such as short time Fourier transform to identify the modes and the use of the velocities of these modes to achieve very accurate results. Further, this study has explored the possibility of reducing the number of sensors needed for data capture by using the velocities of modes captured by a single sensor for source localization. A major problem in practical use of AE technique is the presence of sources of AE other than crack related, such as rubbing and impacts between different components of a structure. These spurious AE signals often mask the signals from the crack activity; hence discrimination of signals to identify the sources is very important. This work developed a model that uses different signal processing tools such as cross-correlation, magnitude squared coherence and energy distribution in different frequency bands as well as modal analysis (comparing amplitudes of identified modes) for accurately differentiating signals from different simulated AE sources. Quantification tools to assess the severity of the damage sources are highly desirable in practical applications. Though different damage quantification methods have been proposed in AE technique, not all have achieved universal approval or have been approved as suitable for all situations. The b-value analysis, which involves the study of distribution of amplitudes of AE signals, and its modified form (known as improved b-value analysis), was investigated for suitability for damage quantification purposes in ductile materials such as steel. This was found to give encouraging results for analysis of data from laboratory, thereby extending the possibility of its use for real life structures. By addressing these primary issues, it is believed that this thesis has helped improve the effectiveness of AE technique for structural health monitoring of civil infrastructures such as bridges.
Resumo:
Modelling video sequences by subspaces has recently shown promise for recognising human actions. Subspaces are able to accommodate the effects of various image variations and can capture the dynamic properties of actions. Subspaces form a non-Euclidean and curved Riemannian manifold known as a Grassmann manifold. Inference on manifold spaces usually is achieved by embedding the manifolds in higher dimensional Euclidean spaces. In this paper, we instead propose to embed the Grassmann manifolds into reproducing kernel Hilbert spaces and then tackle the problem of discriminant analysis on such manifolds. To achieve efficient machinery, we propose graph-based local discriminant analysis that utilises within-class and between-class similarity graphs to characterise intra-class compactness and inter-class separability, respectively. Experiments on KTH, UCF Sports, and Ballet datasets show that the proposed approach obtains marked improvements in discrimination accuracy in comparison to several state-of-the-art methods, such as the kernel version of affine hull image-set distance, tensor canonical correlation analysis, spatial-temporal words and hierarchy of discriminative space-time neighbourhood features.
Resumo:
Power system operation and planning are facing increasing uncertainties especially with the deregulation process and increasing demand for power. Probabilistic power system stability assessment and probabilistic power system planning have been identified by EPRI as one of the important trends in power system operations and planning. Probabilistic small signal stability assessment studies the impact of system parameter uncertainties on system small disturbance stability characteristics. Researches in this area have covered many uncertainties factors such as controller parameter uncertainties and generation uncertainties. One of the most important factors in power system stability assessment is load dynamics. In this paper, composite load model is used to consider the uncertainties from load parameter uncertainties impact on system small signal stability characteristics. The results provide useful insight into the significant stability impact brought to the system by load dynamics. They can be used to help system operators in system operation and planning analysis.
Resumo:
Theoretical foundations of higher order spectral analysis are revisited to examine the use of time-varying bicoherence on non-stationary signals using a classical short-time Fourier approach. A methodology is developed to apply this to evoked EEG responses where a stimulus-locked time reference is available. Short-time windowed ensembles of the response at the same offset from the reference are considered as ergodic cyclostationary processes within a non-stationary random process. Bicoherence can be estimated reliably with known levels at which it is significantly different from zero and can be tracked as a function of offset from the stimulus. When this methodology is applied to multi-channel EEG, it is possible to obtain information about phase synchronization at different regions of the brain as the neural response develops. The methodology is applied to analyze evoked EEG response to flash visual stimulii to the left and right eye separately. The EEG electrode array is segmented based on bicoherence evolution with time using the mean absolute difference as a measure of dissimilarity. Segment maps confirm the importance of the occipital region in visual processing and demonstrate a link between the frontal and occipital regions during the response. Maps are constructed using bicoherence at bifrequencies that include the alpha band frequency of 8Hz as well as 4 and 20Hz. Differences are observed between responses from the left eye and the right eye, and also between subjects. The methodology shows potential as a neurological functional imaging technique that can be further developed for diagnosis and monitoring using scalp EEG which is less invasive and less expensive than magnetic resonance imaging.
Resumo:
This paper proposes a unique and innovative approach to integrate transit signal priority control into a traffic adaptive signal control strategy. The proposed strategy was named OSTRAC (Optimized Strategy for integrated TRAffic and TRAnsit signal Control). The cornerstones of OSTRAC include an online microscopic traffic f low prediction model and a Genetic Algorithm (GA) based traffic signal timing module. A sensitivity analysis was conducted to determine the critical GA parameters. The developed traffic f low model demonstrated reliable prediction results through a test. OSTRAC was evaluated by comparing its performance to three other signal control strategies. The evaluation results revealed that OSTRAC efficiently and effectively reduced delay time of general traffic and also transit vehicles.
Resumo:
Organizations make increasingly use of social media in order to compete for customer awareness and improve the quality of their goods and services. Multiple techniques of social media analysis are already in use. Nevertheless, theoretical underpinnings and a sound research agenda are still unavailable in this field at the present time. In order to contribute to setting up such an agenda, we introduce digital social signal processing (DSSP) as a new research stream in IS that requires multi-facetted investigations. Our DSSP concept is founded upon a set of four sequential activities: sensing digital social signals that are emitted by individuals on social media; decoding online data of social media in order to reconstruct digital social signals; matching the signals with consumers’ life events; and configuring individualized goods and service offerings tailored to the individual needs of customers. We further contribute to tying loose ends of different research areas together, in order to frame DSSP as a field for further investigation. We conclude with developing a research agenda.
Resumo:
To examine gene-expression patterning in late-stage breast cancer biopsies, we used a microdissection technique to separate tumor from the surrounding breast tissue or stroma. A DD-PCR protocol was then used to amplify expressed products, which were resolved using PAGE and used as probe to hybridize with representative human arrays and cDNA libraries. The probe derived from the tumor–stroma comparison was hybridized with a gene array and an arrayed cDNA library derived from a GCT of bone; 21 known genes or expressed sequence tags were detected, of which 17 showed differential expression. These included factors associated with epithelial to mesenchymal transition (vimentin), the cargo selection protein (TIP47) and the signal transducer and activator of transcription (STAT3). Northern blot analysis was used to confirm those genes also expressed by representative breast cancer cell lines. Notably, 6 genes of unknown function were restricted to tumor while the majority of stroma-associated genes were known. When applied to transformed breast cancer cell lines (MDA-MB-435 and T47D) that are known to have different metastatic potential, DD array analysis revealed a further 20 genes; 17 of these genes showed differential expression. Use of microdissection and the DD-PCR array protocol allowed us to identify factors whose localized expression within the breast may play a role in abnormal breast development or breast carcinogenesis.
Resumo:
High-speed broadband internet access is widely recognised as a catalyst to social and economic development. However, the provision of broadband Internet services with the existing solutions to rural population, scattered over an extensive geographical area, remains both an economic and technical challenge. As a feasible solution, the Commonwealth Scientific and Industrial Research Organization (CSIRO) proposed a highly spectrally efficient, innovative and cost-effective fixed wireless broadband access technology, which uses analogue TV frequency spectrum and Multi-User MIMO (MUMIMO) technology with Orthogonal-Frequency-Division-Multiplexing (OFDM). MIMO systems have emerged as a promising solution for the increasing demand of higher data rates, better quality of service, and higher network capacity. However, the performance of MIMO systems can be significantly affected by different types of propagation environments e.g., indoor, outdoor urban, or outdoor rural and operating frequencies. For instance, large spectral efficiencies associated with MIMO systems, which assume a rich scattering environment in urban environments, may not be valid for all propagation environments, such as outdoor rural environments, due to the presence of less scatterer densities. Since this is the first time a MU-MIMO-OFDM fixed broadband wireless access solution is deployed in a rural environment, questions from both theoretical and practical standpoints arise; For example, what capacity gains are available for the proposed solution under realistic rural propagation conditions?. Currently, no comprehensive channel measurement and capacity analysis results are available for MU-MIMO-OFDM fixed broadband wireless access systems which employ large scale multiple antennas at the Access Point (AP) and analogue TV frequency spectrum in rural environments. Moreover, according to the literature, no deterministic MU-MIMO channel models exist that define rural wireless channels by accounting for terrain effects. This thesis fills the aforementioned knowledge gaps with channel measurements, channel modeling and comprehensive capacity analysis for MU-MIMO-OFDM fixed wireless broadband access systems in rural environments. For the first time, channel measurements were conducted in a rural farmland near Smithton, Tasmania using CSIRO's broadband wireless access solution. A novel deterministic MU-MIMO-OFDM channel model, which can be used for accurate performance prediction of rural MUMIMO channels with dominant Line-of-Sight (LoS) paths, was developed under this research. Results show that the proposed solution can achieve 43.7 bits/s/Hz at a Signal-to- Noise Ratio (SNR) of 20 dB in rural environments. Based on channel measurement results, this thesis verifies that the deterministic channel model accurately predicts channel capacity in rural environments with a Root Mean Square (RMS) error of 0.18 bits/s/Hz. Moreover, this study presents a comprehensive capacity analysis of rural MU-MIMOOFDM channels using experimental, simulated and theoretical models. Based on the validated deterministic model, further investigations on channel capacity and the eects of capacity variation, with different user distribution angles (θ) around the AP, were analysed. For instance, when SNR = 20dB, the capacity increases from 15.5 bits/s/Hz to 43.7 bits/s/Hz as θ increases from 10° to 360°. Strategies to mitigate these capacity degradation effects are also presented by employing a suitable user grouping method. Outcomes of this thesis have already been used by CSIRO scientists to determine optimum user distribution angles around the AP, and are of great significance for researchers and MU-MUMO-OFDM system developers to understand the advantages and potential capacity gains of MU-MIMO systems in rural environments. Also, results of this study are useful to further improve the performance of MU-MIMO-OFDM systems in rural environments. Ultimately, this knowledge contribution will be useful in delivering efficient, cost-effective high-speed wireless broadband systems that are tailor-made for rural environments, thus, improving the quality of life and economic prosperity of rural populations.
Resumo:
Background Matrix metalloproteinase (MMP)-9 is an endopeptidase that digests basement membrane type-IV collagen. Enhanced expression has been related to tumour progression in a number of systems. The control of MMP expression is complex, but recently epidermal growth actor receptor (EGFR) activity has been implicated in up-regulation of MMP-9 in tumour cells in vitro. Aims To evaluate interrelations between MMP-9 and EGFR expression in non-small cell lung cancer (NSCLC) and to assess the impact of expression on survival. Methods This is a retrospective study of 152 patients who underwent resection for stage I-IIIa NSCLC with a post-operative survival >60 days. Minimum follow-up was 2 years. Standard ABC immunohistochemistry was performed on 4μm paraffin-embedded sections from the tumour periphery using monoclonal antibodies to MMP-9 and EGFR. Results: MMP-9 was expressed in the tumour cells of 79/152 (52%) cases. EGFR expression was found in 86/152 (57%) cases [membranous 51/152 (34%), cytoplasmic 35/152 (23%)]. MMP-9 expression was associated with poor outcome (p=0.04). Membranous, cytoplasmic and overall EGFR expression were not associated with outcome (p=0.29, p=0.85 and p=0.41 respectively). There was a strong correlation between MMP-9 expression and EGFR expression (p=0.001) and EGFR membranous expression (p=0.01) but not with cytoplasmic EGFR expression (p=0.28). Co-expression of MMP-9 and EGFR (36%) conferred a worse prognosis (p=0.003). Subset analysis revealed only MMP-9 and membranous EGFR co-expression (22%) was associated with poor outcome (p=0.008). Conclusions Our results show that MMP-9 and EGFR are co-expressed in NSCLC. This finding suggests the EGFR signalling pathway may play an important role in the invasive behaviour of NSCLC via specific upregulation of MMP-9. The co-expression of these markers also confers a poor prognosis.
Resumo:
An on-road study was conducted to evaluate a complementary tactile navigation signal on driving behaviour and eye movements for drivers with hearing loss (HL) compared to drivers with normal hearing (NH). 32 participants (16 HL and 16 NH) performed two preprogrammed navigation tasks. In one, participants received only visual information, while the other also included a vibration in the seat to guide them in the correct direction. SMI glasses were used for eye tracking, recording the point of gaze within the scene. Analysis was performed on predefined regions. A questionnaire examined participant's experience of the navigation systems. Hearing loss was associated with lower speed, higher satisfaction with the tactile signal and more glances in the rear view mirror. Additionally, tactile support led to less time spent viewing the navigation display.
Resumo:
The diagnostics of mechanical components operating in transient conditions is still an open issue, in both research and industrial field. Indeed, the signal processing techniques developed to analyse stationary data are not applicable or are affected by a loss of effectiveness when applied to signal acquired in transient conditions. In this paper, a suitable and original signal processing tool (named EEMED), which can be used for mechanical component diagnostics in whatever operating condition and noise level, is developed exploiting some data-adaptive techniques such as Empirical Mode Decomposition (EMD), Minimum Entropy Deconvolution (MED) and the analytical approach of the Hilbert transform. The proposed tool is able to supply diagnostic information on the basis of experimental vibrations measured in transient conditions. The tool has been originally developed in order to detect localized faults on bearings installed in high speed train traction equipments and it is more effective to detect a fault in non-stationary conditions than signal processing tools based on spectral kurtosis or envelope analysis, which represent until now the landmark for bearings diagnostics.