209 resultados para Shortest Path Length
Resumo:
Objective.To estimate the excess length of stay in an intensive care unit (ICU) due to a central line–associated bloodstream infection (CLABSI), using a multistate model that accounts for the timing of infection. Design.A cohort of 3,560 patients followed up for 36,806 days in ICUs. Setting.Eleven ICUs in 3 Latin American countries: Argentina, Brazil, and Mexico. Patients.All patients admitted to the ICU during a defined time period with a central line in place for more than 24 hours. Results.The average excess length of stay due to a CLABSI increased in 10 of 11 ICUs and varied from −1.23 days to 4.69 days. A reduction in length of stay in Mexico was probably caused by an increased risk of death due to CLABSI, leading to shorter times to death. Adjusting for patient age and Average Severity of Illness Score tended to increase the estimated excess length of stays due to CLABSI. Conclusions.CLABSIs are associated with an excess length of ICU stay. The average excess length of stay varies between ICUs, most likely because of the case‐mix of admissions and differences in the ways that hospitals deal with infections.
Resumo:
The recognition that Web 2.0 applications and social media sites will strengthen and improve interaction between governments and citizens has resulted in a global push into new e-democracy or Government 2.0 spaces. These typically follow government-to-citizen (g2c) or citizen-to-citizen (c2c) models, but both these approaches are problematic: g2c is often concerned more with service delivery to citizens as clients, or exists to make a show of ‘listening to the public’ rather than to genuinely source citizen ideas for government policy, while c2c often takes place without direct government participation and therefore cannot ensure that the outcomes of citizen deliberations are accepted into the government policy-making process. Building on recent examples of Australian Government 2.0 initiatives, we suggest a new approach based on government support for citizen-to-citizen engagement, or g4c2c, as a workable compromise, and suggest that public service broadcasters should play a key role in facilitating this model of citizen engagement.
Resumo:
Purpose: To analyze the repeatability of measuring nerve fiber length (NFL) from images of the human corneal subbasal nerve plexus using semiautomated software. Methods: Images were captured from the corneas of 50 subjects with type 2 diabetes mellitus who showed varying severity of neuropathy, using the Heidelberg Retina Tomograph 3 with Rostock Corneal Module. Semiautomated nerve analysis software was independently used by two observers to determine NFL from images of the subbasal nerve plexus. This procedure was undertaken on two occasions, 3 days apart. Results: The intraclass correlation coefficient values were 0.95 (95% confidence intervals: 0.92–0.97) for individual subjects and 0.95 (95% confidence intervals: 0.74–1.00) for observer. Bland-Altman plots of the NFL values indicated a reduced spread of data with lower NFL values. The overall spread of data was less for (a) the observer who was more experienced at analyzing nerve fiber images and (b) the second measurement occasion. Conclusions: Semiautomated measurement of NFL in the subbasal nerve fiber layer is highly repeatable. Repeatability can be enhanced by using more experienced observers. It may be possible to markedly improve repeatability when measuring this anatomic structure using fully automated image analysis software.
Resumo:
Catheter associated urinary tract infections (CAUTI) are a worldwide problem that may lead to increased patient morbidity, cost and mortality.1e3 The literature is divided on whether there are real effects from CAUTI on length of stay or mortality. Platt4 found the costs and mortality risks to be largeyetGraves et al found the opposite.5 A reviewof the published estimates of the extra length of stay showed results between zero and 30 days.6 The differences in estimates may have been caused by the different epidemiological methods applied. Accurately estimating the effects of CAUTI is difficult because it is a time-dependent exposure. This means that standard statistical techniques, such asmatched case-control studies, tend to overestimate the increased hospital stay and mortality risk due to infection. The aim of the study was to estimate excess length of stay andmortality in an intensive care unit (ICU) due to a CAUTI, using a statistical model that accounts for the timing of infection. Data collected from ICU units in lower and middle income countries were used for this analysis.7,8 There has been little research for these settings, hence the need for this paper.
Resumo:
The main objective of this paper is to detail the development of a feasible hardware design based on Evolutionary Algorithms (EAs) to determine flight path planning for Unmanned Aerial Vehicles (UAVs) navigating terrain with obstacle boundaries. The design architecture includes the hardware implementation of Light Detection And Ranging (LiDAR) terrain and EA population memories within the hardware, as well as the EA search and evaluation algorithms used in the optimizing stage of path planning. A synthesisable Very-high-speed integrated circuit Hardware Description Language (VHDL) implementation of the design was developed, for realisation on a Field Programmable Gate Array (FPGA) platform. Simulation results show significant speedup compared with an equivalent software implementation written in C++, suggesting that the present approach is well suited for UAV real-time path planning applications.
Resumo:
This paper presents Multi-Step A* (MSA*), a search algorithm based on A* for multi-objective 4D vehicle motion planning (three spatial and one time dimension). The research is principally motivated by the need for offline and online motion planning for autonomous Unmanned Aerial Vehicles (UAVs). For UAVs operating in large, dynamic and uncertain 4D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles and the rules of the air. It is shown that MSA* finds a cost optimal solution using variable length, angle and velocity trajectory segments. These segments are approximated with a grid based cell sequence that provides an inherent tolerance to uncertainty. Computational efficiency is achieved by using variable successor operators to create a multi-resolution, memory efficient lattice sampling structure. Simulation studies on the UAV flight planning problem show that MSA* meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of vector neighbourhood based A*.
Resumo:
To obtain minimum time or minimum energy trajectories for robots it is necessary to employ planning methods which adequately consider the platform’s dynamic properties. A variety of sampling, graph-based or local receding-horizon optimisation methods have previously been proposed. These typically use simplified kino-dynamic models to avoid the significant computational burden of solving this problem in a high dimensional state-space. In this paper we investigate solutions from the class of pseudospectral optimisation methods which have grown in favour amongst the optimal control community in recent years. These methods have high computational efficiency and rapid convergence properties. We present a practical application of such an approach to the robot path planning problem to provide a trajectory considering the robot’s dynamic properties. We extend the existing literature by augmenting the path constraints with sensed obstacles rather than predefined analytical functions to enable real world application.
Resumo:
Background: Ambulance ramping within the Emergency Department (ED) is a common problem both internationally and in Australia. Previous research has focused on various issues associated with ambulance ramping such as access block, ED overcrowding and ambulance bypass. However, limited research has been conducted on ambulance ramping and its effects on patient outcomes. ----- ----- Methods: A case-control design was used to describe, compare and predict patient outcomes of 619 ramped (cases) vs. 1238 non-ramped (control) patients arriving to one ED via ambulance from 1 June 2007 to 31 August 2007. Cases and controls were matched (on a 1:2 basis) on age, gender and presenting problem. Outcome measures included ED length of stay and in-hospital mortality. ----- ----- Results: The median ramp time for all 1857 patients was 11 (IQR 6—21) min. Compared to nonramped patients, ramped patients had significantly longer wait time to be triaged (10 min vs. 4 min). Ramped patients also comprised significantly higher proportions of those access blocked (43% vs. 34%). No significant difference in the proportion of in-hospital deaths was identified (2%vs. 3%). Multivariate analysis revealed that the likelihood of having an ED length of stay greater than eight hours was 34% higher among patients who were ramped (OR 1.34, 95% CI 1.06—1.70, p = 0.014). In relation to in-hospital mortality age was the only significant independent predictor of mortality (p < 0.0001). ----- ----- Conclusion: Ambulance ramping is one factor that contributes to prolonged ED length of stay and adds additional strain on ED service provision. The potential for adverse patient outcomes that may occur as a result of ramping warrants close attention by health care service providers.
Resumo:
Despite many arguments to the contrary, the three-act story structure, as propounded and refined by Hollywood continues to dominate the blockbuster and independent film markets. Recent successes in post-modern cinema could indicate new directions and opportunities for low-budget national cinemas.
Resumo:
Rather than catch-up with the West, when it comes to creative industries, China must find its own path.
Resumo:
A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.
Resumo:
Evidence suggests that both start-up and young firms (henceforth: new firms) – despite typically being resource-constrained – are sometimes able to innovate (Katila & Shane 2005). Such firms are seldom able to invest in expensive innovation processes, which suggests that they may rely on other pathways to innovation. In this paper, we test arguments that “bricolage,” defined as making do by applying combinations of the resources at hand to new problems and opportunities, provides a pathway to innovation for new firms. Our results suggest that variations in bricolage behaviors can provide an explanation of innovation under resource constraints by new firms.
Resumo:
Young novice drivers are significantly more likely to be killed or injured in car crashes than older, experienced drivers. Graduated driver licensing (GDL), which allows the novice to gain driving experience under less-risky circumstances, has resulted in reduced crash incidence; however, the driver's psychological traits are ignored. This paper explores the relationships between gender, age, anxiety, depression, sensitivity to reward and punishment, sensation-seeking propensity, and risky driving. Participants were 761 young drivers aged 17–24 (M= 19.00, SD= 1.56) with a Provisional (intermediate) driver's licence who completed an online survey comprising socio-demographic questions, the Impulsive Sensation Seeking Scale, Kessler's Psychological Distress Scale, the Sensitivity to Punishment and Sensitivity to Reward Questionnaire, and the Behaviour of Young Novice Drivers Scale. Path analysis revealed depression, reward sensitivity, and sensation-seeking propensity predicted the self-reported risky behaviour of the young novice drivers. Gender was a moderator; and the anxiety level of female drivers also influenced their risky driving. Interventions do not directly consider the role of rewards and sensation seeking, or the young person's mental health. An approach that does take these variables into account may contribute to improved road safety outcomes for both young and older road users.
Resumo:
There is worldwide interest in reducing aircraft emissions. The difficulty of reducing emissions including water vapour, carbon dioxide (CO2) and oxides of nitrogen (NOx) is mainly due from the fact that a commercial aircraft is usually designed for a particular optimal cruise altitude but may be requested or required to operate and deviate at different altitude and speeds to archive a desired or commanded flight plan, resulting in increased emissions. This is a multi- disciplinary problem with multiple trade-offs such as optimising engine efficiency, minimising fuel burnt, minimise emissions while maintaining aircraft separation and air safety. This project presents the coupling of an advanced optimisation technique with mathematical models and algorithms for aircraft emission reduction through flight optimisation. Numerical results show that the method is able to capture a set of useful trade-offs between aircraft range and NOx, and mission fuel consumption and NOx. In addition, alternative cruise operating conditions including Mach and altitude that produce minimum NOx and CO2 (minimum mission fuel weight) are suggested.