73 resultados para SURF Descriptor
Resumo:
This paper outlines the approach taken by the Speech, Audio, Image and Video Technologies laboratory, and the Applied Data Mining Research Group (SAIVT-ADMRG) in the 2014 MediaEval Social Event Detection (SED) task. We participated in the event based clustering subtask (subtask 1), and focused on investigating the incorporation of image features as another source of data to aid clustering. In particular, we developed a descriptor based around the use of super-pixel segmentation, that allows a low dimensional feature that incorporates both colour and texture information to be extracted and used within the popular bag-of-visual-words (BoVW) approach.
Resumo:
The impact of simulation methods for social research in the Information Systems (IS) research field remains low. A concern is our field is inadequately leveraging the unique strengths of simulation methods. Although this low impact is frequently attributed to methodological complexity, we offer an alternative explanation – the poor construction of research value. We argue a more intuitive value construction, better connected to the knowledge base, will facilitate increased value and broader appreciation. Meta-analysis of studies published in IS journals over the last decade evidences the low impact. To facilitate value construction, we synthesize four common types of simulation research contribution: Analyzer, Tester, Descriptor, and Theorizer. To illustrate, we employ the proposed typology to describe how each type of value is structured in simulation research and connect each type to instances from IS literature, thereby making these value types and their construction visible and readily accessible to the general IS community.
Resumo:
This chapter analyses the copyright law framework needed to ensure open access to outputs of the Australian academic and research sector such as journal articles and theses. It overviews the new knowledge landscape, the principles of copyright law, the concept of open access to knowledge, the recently developed open content models of copyright licensing and the challenges faced in providing greater access to knowledge and research outputs.
Resumo:
In the current regulatory climate, there is increasing expectation that law schools will be able to demonstrate students’ acquisition of learning outcomes regarding collaboration skills. We argue that this is best achieved through a stepped and structured whole-of-curriculum approach to small group learning. ‘Group work’ provides deep learning and opportunities to develop professional skills, but these benefits are not always realised for law students. An issue is that what is meant by ‘group work’ is not always clear, resulting in a learning regime that may not support the attainment of desired outcomes. This paper describes different types of ‘group work', each associated with distinct learning outcomes. It suggests that ‘group work’ as an umbrella term to describe these types is confusing, as it provides little indication to students and teachers of the type of learning that is valued and is expected to take place. ‘Small group learning’ is a preferable general descriptor. Identifying different types of small group learning allows law schools to develop and demonstrate a scaffolded, sequential and incremental approach to fostering law students’ collaboration skills. To support learning and the acquisition of higherorder skills, different types of small group learning are more appropriate at certain stages of the program. This structured approach is consistent with social cognitive theory, which suggests that with the guidance of a supportive teacher, students can develop skills and confidence in one type of activity which then enhances motivation to participate in another.
Resumo:
The mean shift tracker has achieved great success in visual object tracking due to its efficiency being nonparametric. However, it is still difficult for the tracker to handle scale changes of the object. In this paper, we associate a scale adaptive approach with the mean shift tracker. Firstly, the target in the current frame is located by the mean shift tracker. Then, a feature point matching procedure is employed to get the matched pairs of the feature point between target regions in the current frame and the previous frame. We employ FAST-9 corner detector and HOG descriptor for the feature matching. Finally, with the acquired matched pairs of the feature point, the affine transformation between target regions in the two frames is solved to obtain the current scale of the target. Experimental results show that the proposed tracker gives satisfying results when the scale of the target changes, with a good performance of efficiency.
Resumo:
We propose the use of optical flow information as a method for detecting and describing changes in the environment, from the perspective of a mobile camera. We analyze the characteristics of the optical flow signal and demonstrate how robust flow vectors can be generated and used for the detection of depth discontinuities and appearance changes at key locations. To successfully achieve this task, a full discussion on camera positioning, distortion compensation, noise filtering, and parameter estimation is presented. We then extract statistical attributes from the flow signal to describe the location of the scene changes. We also employ clustering and dominant shape of vectors to increase the descriptiveness. Once a database of nodes (where a node is a detected scene change) and their corresponding flow features is created, matching can be performed whenever nodes are encountered, such that topological localization can be achieved. We retrieve the most likely node according to the Mahalanobis and Chi-square distances between the current frame and the database. The results illustrate the applicability of the technique for detecting and describing scene changes in diverse lighting conditions, considering indoor and outdoor environments and different robot platforms.
Resumo:
Bioacoustic monitoring has become a significant research topic for species diversity conservation. Due to the development of sensing techniques, acoustic sensors are widely deployed in the field to record animal sounds over a large spatial and temporal scale. With large volumes of collected audio data, it is essential to develop semi-automatic or automatic techniques to analyse the data. This can help ecologists make decisions on how to protect and promote the species diversity. This paper presents generic features to characterize a range of bird species for vocalisation retrieval. In the implementation, audio recordings are first converted to spectrograms using short-time Fourier transform, then a ridge detection method is applied to the spectrogram for detecting points of interest. Based on the detected points, a new region representation are explored for describing various bird vocalisations and a local descriptor including temporal entropy, frequency bin entropy and histogram of counts of four ridge directions is calculated for each sub-region. To speed up the retrieval process, indexing is carried out and the retrieved results are ranked according to similarity scores. The experiment results show that our proposed feature set can achieve 0.71 in term of retrieval success rate which outperforms spectral ridge features alone (0.55) and Mel frequency cepstral coefficients (0.36).
Resumo:
"The Australian Consumer Law came into operation on 1 January 2011 as a single national law. It replaced 17 different pieces of Commonwealth, State and Territory legislation relating to consumer protection. Its introduction meant that for the first time, consumers throughout Australia had the same rights and remedies and correspondingly, businesses had the same obligations and responsibilities towards consumers without the barrier of confusing and expensive local variations in the law. Australian Consumer Law: Commentary and Materials contains up-to-date material on the Australian Consumer Law, and in particular the fifth edition incorporates: a revised treatment of unconscionability, taking account of the changes to Part 2-2 of the ACL that became effective in 2012; other State and Federal provisions relating to unfair terms and cases such as Kakavas v Crown Melbourne, ACCC v Lux Distributors, Director of Consumer Affairs v Scully and PT Ltd v Spuds Surf; a comprehensive treatment of the impact of Google v ACCC, Forrest v ASIC and ACCC v TPG – the trilogy of decisions that provide the most recent insights into the High Court’s thinking on aspects of the prohibitions of misleading conduct in the ACL and the Corporations Act 2001; numerous decisions of note; and the possible impact of the Harper Review."--publisher website
Resumo:
In the field of face recognition, sparse representation (SR) has received considerable attention during the past few years, with a focus on holistic descriptors in closed-set identification applications. The underlying assumption in such SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such an assumption is easily violated in the face verification scenario, where the task is to determine if two faces (where one or both have not been seen before) belong to the same person. In this study, the authors propose an alternative approach to SR-based face verification, where SR encoding is performed on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which then form an overall face descriptor. Owing to the deliberate loss of spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment and various image deformations. Within the proposed framework, they evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN) and an implicit probabilistic technique based on Gaussian mixture models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, on both the traditional closed-set identification task and the more applicable face verification task. The experiments also show that l1-minimisation-based encoding has a considerably higher computational cost when compared with SANN-based and probabilistic encoding, but leads to higher recognition rates.
Resumo:
The world is rich with information such as signage and maps to assist humans to navigate. We present a method to extract topological spatial information from a generic bitmap floor plan and build a topometric graph that can be used by a mobile robot for tasks such as path planning and guided exploration. The algorithm first detects and extracts text in an image of the floor plan. Using the locations of the extracted text, flood fill is used to find the rooms and hallways. Doors are found by matching SURF features and these form the connections between rooms, which are the edges of the topological graph. Our system is able to automatically detect doors and differentiate between hallways and rooms, which is important for effective navigation. We show that our method can extract a topometric graph from a floor plan and is robust against ambiguous cases most commonly seen in floor plans including elevators and stairwells.
Resumo:
Cyclostationary analysis has proven effective in identifying signal components for diagnostic purposes. A key descriptor in this framework is the cyclic power spectrum, traditionally estimated by the averaged cyclic periodogram and the smoothed cyclic periodogram. A lengthy debate about the best estimator finally found a solution in a cornerstone work by Antoni, who proposed a unified form for the two families, thus allowing a detailed statistical study of their properties. Since then, the focus of cyclostationary research has shifted towards algorithms, in terms of computational efficiency and simplicity of implementation. Traditional algorithms have proven computationally inefficient and the sophisticated "cyclostationary" definition of these estimators slowed their spread in the industry. The only attempt to increase the computational efficiency of cyclostationary estimators is represented by the cyclic modulation spectrum. This indicator exploits the relationship between cyclostationarity and envelope analysis. The link with envelope analysis allows a leap in computational efficiency and provides a "way in" for the understanding by industrial engineers. However, the new estimator lies outside the unified form described above and an unbiased version of the indicator has not been proposed. This paper will therefore extend the analysis of envelope-based estimators of the cyclic spectrum, proposing a new approach to include them in the unified form of cyclostationary estimators. This will enable the definition of a new envelope-based algorithm and the detailed analysis of the properties of the cyclic modulation spectrum. The computational efficiency of envelope-based algorithms will be also discussed quantitatively for the first time in comparison with the averaged cyclic periodogram. Finally, the algorithms will be validated with numerical and experimental examples.
Resumo:
Human age is surrounded by assumed set of rules and behaviors imposed by local culture and the society they live in. This paper introduces software that counts the presence of a person on the Internet and examines the activities he/she conducts online. The paper answers questions such as how "old" are you on the Internet? How soon will a newbie be exposed to adult websites? How long will it take for a new Internet user to know about social networking sites? And how many years a user has to surf online to celebrate his/her first "birthday" of Internet presence? Paper findings from a database of 105 school and university students containing their every click of first 24 hours of Internet usage are presented. The findings provide valuable insights for Internet Marketing, ethics, Internet business and the mapping of Internet life with real life. Privacy and ethical issues related to the study have been discussed at the end. © Springer Science+Business Media B.V. 2010.
Resumo:
I wouldn’t necessarily consider myself a meme scholar outright; rather, the memes within my research have emerged from studying everyday practices and cultures of social media, within political and topical discussions, as well as popular culture and fandom contexts. This piece is an extension of ideas that have come out of my recent work around the “irreverent internet” (in the first and last of the blatant plugs, see this [sorry, paywall] and this). I’ve used this term as a descriptor for how play and silliness are popular strategies for the coverage and presentation of the topical and the mundane online. Here, I am especially focusing on playful and irreverent engagement with issues, events, and breaking news, where irony, sarcasm, parody, satire, snark, and more, are important framing devices on social media. While my work (and this post) generally falls on the side of “nice” irreverence, these approaches are also applicable for meaner, vindictive, hateful, offensive, and vitriolic comments. These include meme communities dealing in racist attitudes and content or various hashtags and related comments which promote racist, far-right views and/or denote contexts rife with abuse and harassment — and not just the Gamergate example. This is not positioning trolling as a single practice or intent, either— see Whitney Phillips’ work...