200 resultados para STRAINS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The redclaw crayfish Cherax quadricarinatus (von Martens) accounts for the entire commercial production of freshwater crayfish in Australia. Two forms have been recognized, an 'Eastern' form in northern Queensland and a 'Western' form in the Northern Territory and far northern Western Australia. To date, only the Eastern form has been exported overseas for culture (including to China). The genetic structure of three Chinese redclaw crayfish culture lines from three different geographical locations in China (Xiamen in Fujian Province, Guangzhou in Guangdong Province and Chongming in Shanghai) were investigated for their levels and patterns of genetic diversity using microsatellite markers. Twenty-eight SSR markers were isolated and used to analyse genetic diversity levels in three redclaw crayfish culture lines in China. This study set out to improve the current understanding of the molecular genetic characteristics of imported strains of redclaw crayfish reared in China. Microsatellite analysis revealed moderate allelic and high gene diversity in all three culture lines. Polymorphism information content estimates for polymorphic loci varied between 0.1168 and 0.8040, while pairwise F ST values among culture lines were moderate (0.0020-0.1244). The highest estimate of divergence was evident between the Xiamen and Guangzhou populations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine-detailed molecular marker for epidemiological analysis appears justified, the tarP and ORF663 genes also appear to be valuable markers of phylogenetic or biogeographic divisions at the C. pecorum intra-species level. This research has significant implications for future typing studies to understand the phylogeny, genetic diversity, and epidemiology of C. pecorum infections in the koala and other animal species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterococci are versatile Gram-positive bacteria that can survive under extreme conditions. Most enterococci are non-virulent and found in the gastrointestinal tract of humans and animals. Other strains are opportunistic pathogens that contribute to a large number of nosocomial infections globally. Epidemiological studies demonstrated a direct relationship between the density of enterococci in surface waters and the risk of swimmer-associated gastroenteritis. The distribution of infectious enterococcal strains from the hospital environment or other sources to environmental water bodies through sewage discharge or other means, could increase the prevalence of these strains in the human population. Environmental water quality studies may benefit from focusing on a subset of Enterococcus spp. that are consistently associated with sources of faecal pollution such as domestic sewage, rather than testing for the entire genus. E. faecalis and E. faecium are potentially good focal species for such studies, as they have been consistently identified as the dominant Enterococcus spp. in human faeces and sewage. On the other hand enterococcal infections are predominantly caused by E. faecalis and E. faecium. The characterisation of E. faecalis and E. faecium is important in studying their population structures, particularly in environmental samples. In developing and implementing rapid, robust molecular genotyping techniques, it is possible to more accurately establish the relationship between human and environmental enterococci. Of particular importance, is to determine the distribution of high risk enterococcal clonal complexes, such as E. faecium clonal complex 17 and E. faecalis clonal complexes 2 and 9 in recreational waters. These clonal complexes are recognized as particularly pathogenic enterococcal genotypes that cause severe disease in humans globally. The Pimpama-Coomera watershed is located in South East Queensland, Australia and was investigated in this study mainly because it is used intensively for agriculture and recreational purposes and has a strong anthropogenic impact. The primary aim of this study was to develop novel, universally applicable, robust, rapid and cost effective genotyping methods which are likely to yield more definitive results for the routine monitoring of E. faecalis and E. faecium, particularly in environmental water sources. To fullfill this aim, new genotyping methods were developed based on the interrogation of highly informative single nucleotide polymorphisms (SNPs) located in housekeeping genes of both E. faecalis and E. faecium. SNP genotyping was successfully applied in field investigations of the Coomera watershed, South-East Queensland, Australia. E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles respectively. This study showed the high longitudinal diversity of E. faecalis and E. faecium over a period of two years, and both human-related and human-specific SNP profiles were identified. Furthermore, 4.25% of E. faecium strains isolated from water was found to correspond to the important clonal complex-17 (CC17). Strains that belong to CC17 cause the majority of hospital outbreaks and clinical infections globally. Of the six sampling sites of the Coomera River, Paradise Point had the highest number of human-related and human-specific E. faecalis and E. faecium SNP profiles. The secondary aim of this study was to determine the antibiotic-resistance profiles and virulence traits associated with environmental E. faecalis and E. faecium isolates compared to human pathogenic E. faecalis and E. faecium isolates. This was performed to predict the potential health risks associated with coming into contact with these strains in the Coomera watershed. In general, clinical isolates were found to be more resistant to all the antibiotics tested compared to water isolates and they harbored more virulence traits. Multi-drug resistance was more prevalent in clinical isolates (71.18% of E. faecalis and 70.3 % of E. faecium) compared to water isolates (only 5.66 % E. faecium). However, tetracycline, gentamicin, ciprofloxacin and ampicillin resistance was observed in water isolates. The virulence gene esp was the most prevalent virulence determinant observed in clinical isolates (67.79% of E. faecalis and 70.37 % of E. faecium), and this gene has been described as a human-specific marker used for microbial source tracking (MST). The presence of esp in water isolates (16.36% of E. faecalis and 19.14% of E. faecium) could be indicative of human faecal contamination in these waterways. Finally, in order to compare overall gene expression between environmental and clinical strains of E. faecalis, a comparative gene hybridization study was performed. The results of this investigation clearly demonstrated the up-regulation of genes associated with pathogenicity in E. faecalis isolated from water. The expression study was performed at physiological temperatures relative to ambient temperatures. The up-regulation of virulence genes demonstrates that environmental strains of E. faecalis can pose an increased health risk which can lead to serious disease, particularly if these strains belong to the virulent CC17 group. The genotyping techniques developed in this study not only provide a rapid, robust and highly discriminatory tool to characterize E. faecalis and E. faecium, but also enables the efficient identification of virulent enterococci that are distributed in environmental water sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effectiveness of a repair work for the restoration of spalled reinforced concrete (r.c.) structures depends to a great extent, on their ability to restore the structural integrity of the r.c. element, to restore its serviceability and to protect the reinforcements from further deterioration. This paper presents results of a study concocted to investigate the structural performance of eight spalled r.c. beams repaired using two advanced repair materials in various zones for comparison purposes, namely a free flowing self compacting mortar (FFSCM) and a polymer Modified cementitious mortar (PMCM). The repair technique adopted was that for the repair of spalled concrete in which the bond between the concrete and steel was completely lost due to reinforcement corrosion or the effect of fire or impact. The beams used for the experiment were first cast, then hacked at various zones before they were repaired except for the control beam. The beam specimens were then loaded to failure under four point loadings. The structural response of each beam was evaluated in terms of first crack load, cracking behavior, crack pattern, deflection, variation of strains in the concrete and steel, collapse load and the modes of failure. The results of the test showed that, the repair materials applied on the various zones of the beams were able to restore more than 100% of the beams’ capacity and that FFSCM gave a better overall performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of a recent investigation into Insulated Rail Joint Tie Plate fatigue failures. In particular it focuses on the results of data obtained through field strain gauge and accelerometer measurements of in-service Insulated Rail Joint Tie Plates. These measurements have identified a significant variability in the strains present in similar joints operating under identical load conditions. This variability in stress invariably has a significant influence on the life of the joints. The results of rainflow counting and a fatigue analysis are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Giant freshwater prawn (GFP; Macrobrachium rosenbergii) aquaculture has expanded rapidly since 1990. Most local culture industries, however, have developed in an unsystematic way. Fiji has a small culture industry producing the ‘Anuenue’ strain; however, performance of this strain has never been systematically evaluated. Recently, some Fijian farmers have reported declines in stock productivity. The current project evaluated the relative performance of three exotic strains with different genetic backgrounds from Malaysia, Indonesia and Vietnam, against the ‘local’ strain in Fiji in a 4 × 3 replicated pond trial experiment. A total of 5827 prawns were harvested after 143 days growout. Individual growth rate and relative survival of the Fiji strain were not statistically different from any of the introduced strains, but Vietnam strain was superior to that of the Malaysia strain. Genetic diversity showed significant differences in variability among strains, with the Malaysian strain displaying the lowest genetic diversity. Indonesia strain showed that females were reaching maturation earlier than other strains and were smaller in size. This study suggests that Malaysian and Indonesian strains would constitute a poor choice for Fiji, whereas the Vietnam strain consistently performed well on all criteria measured. High variation among replicate ponds within strains unfortunately confounded among-strain variation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hamstring strain injuries are amongst the most common and problematic injuries in a wide range of sports that involve high speed running. The comparatively high rate of hamstring injury recurrence is arguably the most concerning aspect of these injuries. A number of modifiable and nonmodifiable risk factors are proposed to predispose athletes to hamstring strains. Potentially, the persistence of risk factors and the development of maladaptations following injury may explain injury recurrence. Here, the role of neuromuscular inhibition following injury is discussed as a potential mechanism for several maladaptations associated with hamstring re-injury. These maladaptations include eccentric hamstring weakness, selective hamstring atrophy and shifts in the knee flexor torque-joint angle relationship. Current evidence indicates that athletes return to competition after hamstring injury having developed maladaptations that predispose them to further injury. When rehabilitating athletes to return to competition following hamstring strain injury, the role of neuromuscular inhibition in re-injury should be considered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To explore psychosocial issues perceived to impact the mental health and well-being of resident (non-fly-in fly-out) mine workers at a local mine in regional Queensland. Design: A descriptive qualitative study using semistructured interviews. Setting: The research was conducted on-site at an opencut coal mine in regional Queensland. Participants: Ten miners (nine men) currently employed in workshop, production or supervisory roles. Main outcome measures: Self-reported issues affecting psychological well-being. Results: Participants’ occupation and the surrounding context appeared to have both positive and negative influences on their well-being. Overall findings could be grouped into four key themes: (i) the importance of relationships; (ii) the impact of lifestyle; (iii) work characteristics; and (iv) mental health attitudes. While not without strains on mental health, in general, participants reported that their current situation was superior to their previous mining jobs. This was attributed to close relationships among locally recruited workers, respect for management practices and rosters that allowed adequate sleep recovery and family time between shifts. Conclusions: This study is the first to examine mental health and well being in non-fly-in fly-out mining populations. It suggests that while some issues appear inherent in the mining occupation, personal and organisational support can help workers have a more positive workplace experience. Further work looking at more extensive comparisons over various mining contexts will greatly assist in the development of programs and support structures for rural and regional mine workers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maize streak virus (MSV; family Geminiviridae, genus Mastrevirus), the causal agent of maize streak disease, ranks amongst the most serious biological threats to food security in subSaharan Africa. Although five distinct MSV strains have been currently described, only one of these - MSV-A - causes severe disease in maize. Due primarily to their not being an obvious threat to agriculture, very little is known about the 'grass-adapted' MSV strains, MSV-B, -C, -D and -E. Since comparing the genetic diversities, geographical distributions and natural host ranges of MSV-A with the other MSV strains could provide valuable information on the epidemiology, evolution and emergence of MSV-A, we carried out a phylogeographical analysis of MSVs found in uncultivated indigenous African grasses. Amongst the 83 new MSV genomes presented here, we report the discovery of six new MSV strains (MSV-F to -K). The non-random recombination breakpoint distributions detectable with these and other available mastrevirus sequences partially mirror those seen in begomoviruses, implying that the forces shaping these breakpoint patterns have been largely conserved since the earliest geminivirus ancestors. We present evidence that the ancestor of all MSV-A variants was the recombinant progeny of ancestral MSV-B and MSV-G/-F variants. While it remains unknown whether recombination influenced the emergence of MSV-A in maize, our discovery that MSV-A variants may both move between and become established in different regions of Africa with greater ease, and infect more grass species than other MSV strains, goes some way towards explaining why MSV-A is such a successful maize pathogen. © 2008 SGM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maize streak virus (MSV), which causes maize streak disease (MSD), is one of the most serious biotic threats to African food security. Here, we use whole MSV genomes sampled over 30 years to estimate the dates of key evolutionary events in the 500 year association of MSV and maize. The substitution rates implied by our analyses agree closely with those estimated previously in controlled MSV evolution experiments, and we use them to infer the date when the maize-adapted strain, MSV-A, was generated by recombination between two grass-adapted MSV strains. Our results indicate that this recombination event occurred in the mid-1800s, ∼20 years before the first credible reports of MSD in South Africa and centuries after the introduction of maize to the continent in the early 1500s. This suggests a causal link between MSV recombination and the emergence of MSV-A as a serious pathogen of maize. © 2009 SGM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Panicum streak virus (PanSV; Family Geminiviridae; Genus Mastrevirus) is a close relative of Maize streak virus (MSV), the most serious viral threat to maize production in Africa. PanSV and MSV have the same leafhopper vector species, largely overlapping natural host ranges and similar geographical distributions across Africa and its associated Indian Ocean Islands. Unlike MSV, however, PanSV has no known economic relevance. Results: Here we report on 16 new PanSV full genome sequences sampled throughout Africa and use these together with others in public databases to reveal that PanSV and MSV populations in general share very similar patterns of genetic exchange and geographically structured diversity. A potentially important difference between the species, however, is that the movement of MSV strains throughout Africa is apparently less constrained than that of PanSV strains. Interestingly the MSV-A strain which causes maize streak disease is apparently the most mobile of all the PanSV and MSV strains investigated. Conclusion: We therefore hypothesize that the generally increased mobility of MSV relative to other closely related species such as PanSV, may have been an important evolutionary step in the eventual emergence of MSV-A as a serious agricultural pathogen. The GenBank accession numbers for the sequences reported in this paper are GQ415386-GQ415401. © 2009 Varsani et al; licensee BioMed Central Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main cis-acting control regions for replication of the single-stranded DNA genome of maize streak virus (MSV) are believed to reside within an approximately 310 nt long intergenic region (LIR). However, neither the minimum LIR sequence required nor the sequence determinants of replication specificity have been determined experimentally. There are iterated sequences, or iterons, both within the conserved inverted-repeat sequences with the potential to form a stem-loop structure at the origin of virion-strand replication, and upstream of the rep gene TATA box (the rep-proximal iteron or RPI). Based on experimental analyses of similar iterons in viruses from other geminivirus genera and their proximity to known Rep-binding sites in the distantly related mastrevirus wheat dwarf virus, it has been hypothesized that the iterons may be Rep-binding and/or -recognition sequences. Here, a series of LIR deletion mutants was used to define the upper bounds of the LIR sequence required for replication. After identifying MSV strains and distinct mastreviruses with incompatible replication-specificity determinants (RSDs), LIR chimaeras were used to map the primary MSV RSD to a 67 nt sequence containing the RPI. Although the results generally support the prevailing hypothesis that MSV iterons are functional analogues of those found in other geminivirus genera, it is demonstrated that neither the inverted-repeat nor RPI sequences are absolute determinants of replication specificity. Moreover, widely divergent mastreviruses can trans-replicate one another. These results also suggest that sequences in the 67 nt region surrounding the RPI interact in a sequence-specific manner with those of the inverted repeat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background. A variety of interactions between up to three different movement proteins (MPs), the coat protein (CP) and genomic DNA mediate the inter- and intra-cellular movement of geminiviruses in the genus Begomovirus. Although movement of viruses in the genus Mastrevirus is less well characterized, direct interactions between a single MP and the CP of these viruses is also clearly involved in both intra- and intercellular trafficking of virus genomic DNA. However, it is currently unknown how specific these MP-CP interactions are, nor how disruption of these interactions might impact on virus viability. Results. Using chimaeric genomes of two strains of Maize streak virus (MSV) we adopted a genetic approach to investigate the gross biological effects of interfering with interactions between virus MP and CP homologues derived from genetically distinct MSV isolates. MP and CP genes were reciprocally exchanged, individually and in pairs, between maize (MSV-Kom)- and Setaria sp. (MSV-Set)-adapted isolates sharing 78% genome-wide sequence identity. All chimaeras were infectious in Zea mays c.v. Jubilee and were characterized in terms of symptomatology and infection efficiency. Compared with their parental viruses, all the chimaeras were attenuated in symptom severity, infection efficiency, and the rate at which symptoms appeared. The exchange of individual MP and CP genes resulted in lower infection efficiency and reduced symptom severity in comparison with exchanges of matched MP-CP pairs. Conclusion. Specific interactions between the mastrevirus MP and CP genes themselves and/or their expression products are important determinants of infection efficiency, rate of symptom development and symptom severity. © 2008 van der Walt et al; licensee BioMed Central Ltd.