98 resultados para São Luís-Grajaú basin
Resumo:
"The ongoing review of the NFS highlighted that engagement with recreational fishers and the Indigenous community, in particular, could be enhanced. This was the impetus for the Talking Fish project which acknowledged the important relationship people have with their local rivers and fish within the Murray-Darling Basin. Within these relationships a wealth of historical information about rivers and fish was held and it was recognised that this needed to be captured..."--publisher website.
Resumo:
The Namoi River winds its way through 42 000 square kilometres of blacksoil plain in the north east of New South Wales. Fed by the rivers of the western slopes of the Great Dividing Range, it contributes about one quarter of the Darling River’s flow. The river, its floodplain, wetlands, swamps and waterholes, are the traditional lands of the Gamilaraay* people. The Namoi is a very different river to the one the Gamilaraay people once knew and fished...
Resumo:
Once known as Crabb’s Creek, Katarapko Creek is a small anabranch of the Murray River, located between the towns of Berri and Loxton in the Riverland region of South Australia. Its 9 000 hectare grey clay floodplain is covered with blackbox, saltbush and lignum. The creek’s horseshoe lagoons, marshes and islands are the traditional lands of the Meru peoples. They fished the creek and surrounding waterways and hunted the wetlands. The ebb and flow of water guided their travels and featured in their stories. The Meru have seen their land and the river change...
Resumo:
The Goulburn River’s cold, clear waters rush westward down from the steep hills and mountains of the Great Dividing Range toward Seymour. The river then turns northward and meanders through hills and plains until the river meets the Murray upstream of Echuca. These are the traditional lands of the Taungurung, Bangerang and Yorta Yorta peoples. However, the Goulburn River today is not the river the Taungurung, Bangerang and Yorta Yorta once knew and fished...
Resumo:
The Upper Murrumbidgee cuts its way through the Snowy Mountains in south‐eastern New South Wales, snaking its way south, then turning north before dropping into the lowland and heading west to join the Murray downstream of Swan Hill. The Upper ‘Bidgee floodplain is only a couple of hundred metres wide, a stark contrast to the kilometres‐wide floodplains in other parts of the Murray‐ Darling Basin. When the floods come, they come up quickly and roar through the narrow valleys. These are the traditional lands of the Ngunnawal and Ngarigo peoples. They fished the river and surrounding waterways and hunted the wetlands. The seasonal rise and fall of the water guided their travels and featured in their stories. The Ngunnawal and Ngarigo people have seen their land and the river change...
Resumo:
The Murray River is the boundary between NSW and Victoria. The river both defines boundaries and unites them with the waters that sustain townships, irrigation and the floodplain forests, including the 70 000ha of the iconic Barmah and Millewa Forest. The river and its floodplain are the traditional lands of the Yorta Yorta and Bangerang people. The Murray is a very different river to the one the Yorta Yorta and Bangerang peoples once knew and fished...
Resumo:
The Lower Darling River and Great Darling Anabranch are located in south west New South Wales. Muddy waters meander over the grey soil floodplains past red dunes, spiky saltbush and gnarled red gums. These are the traditional lands of the Paakintji people. But the land and the river are no longer what the Paakintji once knew and fished...
Resumo:
To say ‘Back o’ Bourke’ means ‘miles from anywhere’ to most Australians, however the Barwon and Darling Rivers that pass by the townships of Brewarrina and Bourke, respectively, are at the heart of the Murray‐Darling Basin. These are the traditional lands of the Ngiyampaa, Murawari and Yuwalaraay peoples (refer Aboriginal language groups in the Bringing back the fish section at the back of this booklet). They fished the river and surrounding waterways and hunted the wetlands. The Ngiyampaa, Murawari and Yuwalaraay people have seen their land and the rivers change...
Resumo:
The Ovens River rises in the Victorian Alps where it is linked to significant freshwater meadows and marshes. It flows past Harrietville, Bright, Myrtleford and Wangaratta where it is joined by the King River on its way to meet the Murray near the top of Lake Mulwala. These the traditional lands of the Bangerang people and their neighbours the Taungurung and Yorta Yorta peoples. They have fished the river and surrounding waterways and hunted the wetlands. The ebb and flow of water guided their travels and featured in their stories. The Bangerang, Taungurung and Yorta Yorta have seen their land and the river change...
Resumo:
After gathering water from 23 river valleys, the Murray empties into Lakes Alexandrina and Albert before making its way to the Coorong and out the Murray Mouth to Encounter Bay in South Australia. The entire Murray‐Darling Basin is upstream. Everything that happens there affects what goes on here...
Resumo:
This chapter was developed as part of the ‘People, communities and economies of the Lake Eyre Basin’ project. It has been written for communities, government agencies and interface organisations involved in natural resource management (NRM) in the Lake Eyre Basin (LEB). Its purpose is to identify the key factors for successful community engagement processes relevant to the LEB and present tools and principles for successful engagement processes. The term ‘interface organisation’ is used here to refer to the diverse range of local and regional organisations (such as Catchment Committees or NRM Regional Bodies) that serve as linkages, or translators, between local communities and broader Australian and State Governments. The importance of fostering and harnessing effective processes of community engagement has been identified as crucial to building a prosperous future for rural and remote regions in Australia. The chapter presents an overview of the literature on successful community engagement processes for NRM, as well as an overview of the current NRM arrangements in the LEB. The main part of the chapter presents findings of the series of interviews conducted with the government liaison officers representing both state and federal organisations who are responsible for coordinating and facilitating regional NRM in the LEB, and with the members of communities of the LEB.
Resumo:
In large sedimentary basins with layers of different rocks, the groundwater flow between aquifers depends on the hydraulic conductivity (K) of the separating low-permeable rocks, or aquitards. Three methods were developed to evaluate K in aquitards for areas with limited field data: • Coherence and harmonic analysis: estimates the regional-scale K based on water-level fluctuations in adjacent aquifers. • Cokriging and Bayes' rule: infers K from downhole geophysical logs. • Fluvial process model: reproduces the lithology architecture of sediment formations which can be converted to K. These proposed methods enable good estimates of K and better planning of further drillholes.
Resumo:
Using density functional theory, we have investigated the catalytic properties of bimetallic complex catalysts PtlAum(CO)n (l + m = 2, n = 1–3) in the reduction of SO2 by CO. Due to the strong coupling between the C-2p and metal 5d orbitals, pre-adsorption of CO molecules on the PtlAum is found to be very effective in not only reducing the activation energy, but also preventing poisoning by sulfur. As result of the coupling, the metal 5d band is broadened and down-shifted, and charge is transferred from the CO molecules to the PtlAum. As SO2 is adsorbed on the catalyst, partial charge moves to the anti-σ bonding orbitals between S and O in SO2, weakening the S–O bond strength. This effect is enhanced by pre-adsorbing up to three CO molecules, therefore the S–O bonds become vulnerable. Our results revealed the mechanism of the excellent catalytic properties of the bimetallic complex catalysts.
Resumo:
The mining industry faces concurrent pressures of reducing water use, energy consumption and greenhouse gas (GHG) emissions in coming years. However, the interactions between water and energy use, as well as GHG e missions have largely been neglected in modelling studies to date. In addition, investigations tend to focus on the unit operation scale, with little consideration of whole-of-site or regional scale effects. This paper presents an application of a hierarchical systems model (HSM) developed to represent water, energy and GHG emissions fluxes at scales ranging from the unit operation, to the site level, to the regional level. The model allows for the linkages between water use, energy use and GHG emissions to be examined in a fl exible and intuitive way, so that mine sites can predict energy and emissions impacts of water use reduction schemes and vice versa. This paper examines whether this approach can also be applied to the regional scale with multiple mine sites. The model is used to conduct a case study of several coal mines in the Bowen Basin, Australia, to compare the utility of centralised and decentralised mine water treatment schemes. The case study takes into account geographical factors (such as water pumping distances and elevations), economic factors (such as capital and operating cost curves for desalination treatment plants) and regional factors (such as regionally varying climates and associated variance in mine water volumes and quality). The case study results indicate that treatment of saline mine water incurs a trade-off between water and energy use in all cases. However, significant cost differences between centralised and decentralised schemes can be observed in a simple economic analysis. Further research will examine the possibility for deriving model up-scaling algorithms to reduce computational requirements.
Resumo:
Microbial respiratory reduction of nitrous oxide (N2O) to dinitrogen (N2) via denitrification plays a key role within the global N-cycle since it is the most important process for converting reactive nitrogen back into inert molecular N2. However, due to methodological constraints, we still lack a comprehensive, quantitative understanding of denitrification rates and controlling factors across various ecosystems. We investigated N2, N2O and NO emissions from irrigated cotton fields within the Aral Sera Basin using the He/O2 atmosphere gas flow soil core technique and an incubation assay. NH4NO3 fertilizer, equivalent to 75 kg ha−1 and irrigation water, adjusting the water holding capacity to 70, 100 and 130% were applied to the incubation vessels to assess its influence on gaseous N emissions. Under soil conditions as they are naturally found after concomitant irrigation and fertilization, denitrification was the dominant process and N2 the main end product of denitrification. The mean ratios of N2/N2O emissions increased with increasing soil moisture content. N2 emissions exceeded N2O emissions by a factor of 5 ± 2 at 70% soil water holding capacity (WHC) and a factor of 55 ± 27 at 130% WHC. The mean ratios of N2O/NO emissions varied between 1.5 ± 0.4 (70% WHC) and 644 ± 108 (130% WHC). The magnitude of N2 emissions for irrigated cotton was estimated to be in the range of 24 ± 9 to 175 ± 65 kg-N ha−1season−1, while emissions of NO were only of minor importance (between 0.1 to 0.7 kg-N ha−1 season−1). The findings demonstrate that for irrigated dryland soils in the Aral Sera Basin, denitrification is a major pathway of N-loss and that substantial amounts of N-fertilizer are lost as N2 to the atmosphere for irrigated dryland soils.