72 resultados para Rings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures of the 1:1 anhydrous salts of nicotine (NIC) with 3,5-dinitrosalicylic acid (DNSA) and 5-sulfosalicylic acid (5-SSA), namely (1R,2S)-1-methyl-2-(3-pyridyl)-1H-pyrrolidin-1-ium 2-carboxy-4,6-dinitrophenolate, C10H15N2+ C7H3N2O7-, (I) and (1R,2S)-1-methyl-2-(3-pyridyl)-1H-pyrrolidin-1-ium 3-carboxy-4-hydroxybenzenesulfonate, C10H15N2+ C7H5O6S-, (II) are reported. The asymmetric units of both (I) and (II) comprise two independent nicotinium cations (C and D) and either two DNSA or two 5-SSA anions (A and B), respectively. One of the DNSA anions shows a 25% rotational disorder in the benzene ring system. In the crystal of (I), inter-unit pyrrolidinium N-H...N(pyridine) hydrogen bonds generate zigzag NIC cation chains which extend along a while the DNSA anions are not involved in any formal inter-species hydrogen bonding but instead form pi--pi associated stacks which parallel the NIC chains along a [ring centroid separation, 3.857(2)A]. Weak C-H...O interactions between chain substructures give an overall three-dimensional structure. With (II), A and B anions form independent zigzag chains with C and D cations, respectively, through carboxylic acid O-H...N(pyridine) hydrogen bonds. These chains, which extend along b are pseudo-centrosymmetrically related and give pi--pi interactions between the benzene rings of anions A and B and the pyridine rings of the NIC cations C and D, respectively [ring centroid separations, 3.6422(19) and 3.7117(19)A]. Present also are weak intermolecular C-H...O hydrogen-bonding interactions between the chains, giving an overall three-dimensional structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures of the ammonium salts of phenoxyacetic acid, NH4+ C8H6O3- (I), (4-fluorophenoxy)acetic acid NH4+ C8H5FO3- (II) and the herbicidally active (4-chloro-2-methylphenoxy)acetic acid (MCPA), NH4+ C9H8ClO3-. 0.5(H2O) (III) have been determined. All have two-dimensional layered structures based on inter-species ammonium N-H...O hydrogen-bonding associations which give core substructures consisting primarily of conjoined cyclic motifs. Crystals of (I) and (II) are isomorphous with the core comprising R2/1(5), R2/1(4) and centrosymmetric R2/4(8) ring motifs, giving two-dimensional layers lying parallel to (100). In (III), the water molecule of solvation lies on a crystallographic twofold rotation axis and bridges two carboxyl O-atoms in an R4/4(12) hydrogen-bonded motif, creating two R3/4(10) rings which together with a conjoined centrosymmetric R2/4(8) ring incorporating both ammonium cations, generate two-dimensional layers lying parallel to (100). No pi-pi ring associations are present in any of the structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing threat of terrorism highlights the importance of enhancing the resilience of underground tunnels to all hazards. This paper develops, applies and compares the Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) techniques to treat the response of buried tunnels to surface explosions. The results and outcomes of the two techniques were compared, along with results from existing test data. The comparison shows that the ALE technique is a better method for describing the tunnel response for above ground explosion with regards to modeling accuracy and computational efficiency. The ALE technique was then applied to treat the blast response of different types of segmented bored tunnels buried in dry sand. Results indicate that the most used modern ring type segmented tunnels were more flexible for in-plane response, however, they suffered permanent drifts between the rings. Hexagonal segmented tunnels responded with negligible drifts in the longitudinal direction, but the magnitudes of in-plane drifts were large and hence hazardous for the tunnel. Interlocking segmented tunnels suffered from permanent drifts in both the longitudinal and transverse directions. Multi-surface radial joints in both the hexagonal and interlocking segments affected the flexibility of the tunnel in the transverse direction. The findings offer significant new information in the behavior of segmented bored tunnels to guide their future implementation in civil engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Underground transport tunnels are vulnerable to blast events. This paper develops and applies a fully coupled technique involving the Smooth Particle Hydrodynamics and Finite Element techniques to investigate the blast response of segmented bored tunnels. Findings indicate that several bolts failed in the longitudinal direction due to redistribution of blast loading to adjacent tunnel rings. The tunnel segments respond as arch mechanisms in the transverse direction and suffered damage mainly due to high bending stresses. The novel information from the present study will enable safer designs of buried tunnels and provide a benchmark reference for future developments in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Advances in nanomaterials/nanostructures offer the possibility of fabricating multifunctional materials for use in engineering applications. Carbon nanotube (CNT)-based nanostructures are a representative building block for these multifunctional materials. Based on a series of in silico studies, we investigated the possibility of tuning the thermal conductivity of a three-dimensional CNT-based nanostructure: a single-walled CNT-based super-nanotube. The thermal conductivity of the super-nanotubes was shown to vary with different connecting carbon rings and super-nanotubes with longer constituent single-walled CNTs and larger diameters had a smaller thermal conductivity. The inverse of the thermal conductivity of the super-nanotubes showed a good linear relationship with the inverse of the length. The thermal conductivity was approximately proportional to the inverse of the temperature, but was insensitive to the axial strain as a result of the Poisson ratio. These results provide a fundamental understanding of the thermal conductivity of the super-nanotubes and will guide their future design/fabrication and engineering applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intervertebral disc (IVD) is a unique soft tissue structure which provides structural support and flexibility in the axial skeleton of vertebrates. From a structural perspective, the disc behaves somewhat like a thick walled pressure vessel, where the walls are comprised of a series of composite annular rings (lamellae). However, a prior study (Marchand and Ahmed, 1990) found a high proportion of circumferentially discontinuous lamellae in human lumbar IVDs. The presence of these discontinuities raises important structural questions, because discontinuous lamellae cannot withstand high nucleus pressures via the generation of circumferential (hoop) stress. A possible alternative mechanism may be that inter-lamellar cohesion allows shear stress transfer between adjacent annular layers. The aim of the present study was therefore to investigate the importance of inter-lamellar shear resistance in the intervertebral disc. This work found that inter-lamellar shear resistance has a strong influence on the compressive stiffness of the intervertebral disc, with a change in interface condition from tied (no slip) to frictionless (no shear resistance) reducing disc compressive stiffness by 40%. However, it appears that substantial inter-lamellar shear resistance is present in the bovine tail disc. Decreases in inter-lamellar shear resistance due to degradation of bridging collagenous or elastic fibre structures could therefore be an important part of the process of disc degeneration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION. The intervertebral disc is the largest avascular structure in the human body, withstanding transient loads of up to nine times body weight during rigorous physical activity. The key structural elements of the disc are a gel-like nucleus pulposus surrounded by concentric lamellar rings containing criss-crossed collagen fibres. The disc also contains an elastic fiber network which has been suggested to play a structural role, but to date the relationship between the collagen and elastic fiber networks is unclear. CONCLUSION. The multimodal transmitted and reflected polarized light microscopy technique developed here allows clear differentiation between the collagen and elastic fiber networks of the intervertebral disc. The ability to image unstained specimens avoids concerns with uneven stain penetration or specificity of staining. In bovine tail discs, the elastic fiber network is intimately associated with the collagen network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The powerful oxidant HOCl (hypochlorous acid and its corresponding anion, −OCl) generated by the myeloperoxidase (MPO)–H2O2–Cl− system of activated leukocytes is strongly associated with multiple human inflammatory diseases; consequently there is considerable interest in inhibition of this enzyme. Nitroxides are established antioxidants of low toxicity that can attenuate oxidation in animal models, with this ascribed to superoxide dismutase or radical-scavenging activities. We have shown (M.D. Rees et al., Biochem. J. 421, 79–86, 2009) that nitroxides, including 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-1-yloxyl radical), are potent inhibitors of HOCl formation by isolated MPO and activated neutrophils, with IC50 values of ~1 and ~6 µM respectively. The utility of tetramethyl-substituted nitroxides is, however, limited by their rapid reduction by biological reductants. The corresponding tetraethyl-substituted nitroxides have, however, been reported to be less susceptible to reduction. In this study we show that the tetraethyl species were reduced less rapidly than the tetramethyl species by both human plasma (89–99% decreased rate of reduction) and activated human neutrophils (62–75% decreased rate). The tetraethyl-substituted nitroxides retained their ability to inhibit HOCl production by MPO and activated neutrophils with IC50 values in the low-micromolar range; in some cases inhibition was enhanced compared to tetramethyl substitution. Nitroxides with rigid structures (fused oxaspiro rings) were, however, inactive. Overall, these data indicate that tetraethyl-substituted nitroxides are potent inhibitors of oxidant formation by MPO, with longer plasma and cellular half-lives compared to the tetramethyl species, potentially allowing lower doses to be employed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To determine neuroretinal function with multifocal electroretinogram (mfERG) in diabetic subjects without retinopathy. Methods Multifocal electroretinogram (mfERG) was performed in 18 eyes of 18 diabetic subjects without retinopathy and 17 eyes of 17 age and gender-matched healthy control participants. Among 18 diabetic subjects, two had type 1 and 16 had type 2 diabetes. MfERG responses were averaged by the retinal areas of six concentric rings and four quadrants, and 103 retinal locations; N1–P1 amplitude and P1-implicit time were analysed. Results Average mfERG N1–P1 amplitude (in nv/deg2) of 103 retinal locations was 56.3 ± 17.2 (mean ± SD) in type 1 diabetic subjects, 47.2 ± 9.3 in type 2 diabetic subjects and 71.5 ± 12.7 in controls. Average P1-implicit time (in ms) was 43.0 ± 1.3 in type 1 diabetic subjects, 43.9 ± 2.3 in type 2 diabetic subjects and 41.9 ± 2.1 in controls. There was significant reduction in average N1–P1 amplitude and delay in P1-implicit time in type 2 diabetic subjects in comparison to controls. mfERG amplitude did not show any significant correlation with diabetes duration and blood sugar level. However, implicit time showed a positive correlation with diabetes duration in type 2 diabetic subjects with diabetes duration ≥5 years. Conclusions This is the first study in a Nepalese population with diabetes using multifocal electroretinography. We present novel findings that mfERG N1–P1 amplitude is markedly reduced along with delay in P1-implicit time in type 2 diabetic subjects without retinopathy. These findings indicate that there might be significant dysfunction of inner retina before the development of diabetic retinopathy in the study population, which have higher prevalence of diabetes than the global estimate and uncontrolled blood sugar level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tracheal cartilage has been widely regarded as a linear elastic material either in experimental studies or in analytic and numerical models. However, it has been recently demonstrated that, like other fiber-oriented biological tissues, tracheal cartilage is a nonlinear material, which displays higher strength in compression than in extension. Considering the nonlinearity requires a more complex theoretical frame work and costs more to simulate. This study aims to quantify the deviation due to the simplified treatment of the tracheal cartilage as a linear material. It also evaluates the improved accuracy gained by considering the nonlinearity. Pig tracheal rings were used to exam the mechanical properties of cartilage and muscular membrane. By taking into account the asymmetric shape of tracheal cartilage, the collapse behavior of complete rings was simulated, and the compliance of airway and stress in the muscular membrane were discussed. The results obtained were compared with those assuming linear mechanical properties. The following results were found: (1) Models based on both types of material properties give a small difference in representing collapse behavior; (2) regarding compliance, the relative difference is big, ranging from 10 to 40% under negative pressure conditions; and (3) the difference in determining stress in the muscular membrane is small too: <5%. In conclusion, treating tracheal cartilage as a linear material will not cause big deviations in representing the collapse behavior, and mechanical stress in the muscular part, but it will induce a big deviation in predicting the compliance, particularly when the transmural pressure is lower than -0.5 kPa. The results obtained in this study may be useful in both understanding the collapse behavior of trachea and in evaluating the error induced by the simplification of treating the tracheal cartilage as a linear elastic material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the non-equilibrium molecular dynamics simulations, we have studied the thermal conductivities of a novel ultra-thin one-dimensional carbon nanomaterial - diamond nanothread (DNT). Unlike single-wall carbon nanotube (CNT), the existence of the Stone-Wales transformations in DNT endows it with richer thermal transport characteristics. There is a transition from wave-dominated to particle-dominated transport region, which depends on the length of poly-benzene rings. However, independent of the transport region, strong length dependence in thermal conductivity is observed in DNTs with different lengths of poly-benzene ring. The distinctive SW characteristic in DNT provides more degrees of freedom to tune the thermal conductivity not found in the homogeneous structure of CNT. Therefore, DNT is an ideal platform to investigate various thermal transport mechanisms at the nanoscale. Its high tunability raises the potential to design DNTs for different applications, such as thermal connection and temperature management.