412 resultados para Requirements elicitation techniques
Resumo:
Information uncertainty which is inherent in many real world applications brings more complexity to the visualisation problem. Despite the increasing number of research papers found in the literature, much more work is needed. The aims of this chapter are threefold: (1) to provide a comprehensive analysis of the requirements of visualisation of information uncertainty and their dimensions of complexity; (2) to review and assess current progress; and (3) to discuss remaining research challenges. We focus on four areas: information uncertainty modelling, visualisation techniques, management of information uncertainty modelling, propagation and visualisation, and the uptake of uncertainty visualisation in application domains.
Resumo:
A major project in the Sustainable Built Assets core area is the Sustainable Sub-divisions – Ventilation Project that is the second stage of a planned series of research projects focusing on sustainable sub-divisions. The initial project, Sustainable Sub-divisions: Energy focused on energy efficiency and examined the link between dwelling energy efficiency and sub-divisional layout. In addition, the potential for on site electricity generation, especially in medium and high-density developments, was also examined. That project recommended that an existing lot-rating methodology be adapted for use in SEQ through the inclusion of sub divisional appropriate ventilation data. Acquiring that data is the object of this project. The Sustainable Sub-divisions; Ventilation Project will produce a series of reports. The first report (Report 2002-077-B-01) summarised the results from an industry workshop and interviews that were conducted to ascertain the current attitudes and methodologies used in contemporary sub-division design in South East Queensland. The second report (Report 2002-077-B-02) described how the project is being delivered as outlined in the Project Agreement. It included the selection of the case study dwellings and monitoring equipment and data management process. This third report (Report 2002-077-B-03) provides an analysis and review of the approaches recommended by leading experts, government bodies and professional organizations throughout Australia that aim to increase the potential for passive cooling and heating at the subdivision stage. This data will inform issues discussed on the development of the enhanced lot-rating methodology in other reports of this series. The final report, due in June 2007, will detail the analysis of data for winter 2006 and summer 2007, leading to the development and delivery of the enhanced lot-rating methodology.
Resumo:
In public venues, crowd size is a key indicator of crowd safety and stability. Crowding levels can be detected using holistic image features, however this requires a large amount of training data to capture the wide variations in crowd distribution. If a crowd counting algorithm is to be deployed across a large number of cameras, such a large and burdensome training requirement is far from ideal. In this paper we propose an approach that uses local features to count the number of people in each foreground blob segment, so that the total crowd estimate is the sum of the group sizes. This results in an approach that is scalable to crowd volumes not seen in the training data, and can be trained on a very small data set. As a local approach is used, the proposed algorithm can easily be used to estimate crowd density throughout different regions of the scene and be used in a multi-camera environment. A unique localised approach to ground truth annotation reduces the required training data is also presented, as a localised approach to crowd counting has different training requirements to a holistic one. Testing on a large pedestrian database compares the proposed technique to existing holistic techniques and demonstrates improved accuracy, and superior performance when test conditions are unseen in the training set, or a minimal training set is used.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
Older drivers represent the fastest growing segment of the road user population. Cognitive and physiological capabilities diminishes with ages. The design of future in-vehicle interfaces have to take into account older drivers' needs and capabilities. Older drivers have different capabilities which impact on their driving patterns and subsequently on road crash patterns. New in-vehicle technology could improve safety, comfort and maintain elderly people's mobility for longer. Existing research has focused on the ergonomic and Human Machine Interface (HMI) aspects of in-vehicle technology to assist the elderly. However there is a lack of comprehensive research on identifying the most relevant technology and associated functionalities that could improve older drivers' road safety. To identify future research priorities for older drivers, this paper presents: (i) a review of age related functional impairments, (ii) a brief description of some key characteristics of older driver crashes and (iii) a conceptualisation of the most relevant technology interventions based on traffic psychology theory and crash data.
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
In this paper techniques for scheduling additional train services (SATS) are considered as is train scheduling involving general time window constraints, fixed operations, maintenance activities and periods of section unavailability. The SATS problem is important because additional services must often be given access to the railway and subsequently integrated into current timetables. The SATS problem therefore considers the competition for railway infrastructure between new services and existing services belonging to the same or different operators. The SATS problem is characterised as a hybrid job shop scheduling problem with time window constraints. To solve this problem constructive algorithm and metaheuristic scheduling techniques that operate upon a disjunctive graph model of train operations are utilised. From numerical investigations the proposed framework and associated techniques are tested and shown to be effective.
Resumo:
There are many interactive media systems, including computer games and media art works, in which it is desirable for music to vary in response to changes in the environment. In this paper we will outline a range of algorithmic techniques that enable music to adapt to such changes, taking into account the need for the music to vary in its expressiveness or mood while remaining coherent and recognisable. We will discuss the approaches which we have arrived at after experience in a range of adaptive music systems over recent years, and draw upon these experiences to inform discussion of relevant considerations and to illustrate the techniques and their effect.
Resumo:
Expert elicitation is the process of retrieving and quantifying expert knowledge in a particular domain. Such information is of particular value when the empirical data is expensive, limited, or unreliable. This paper describes a new software tool, called Elicitator, which assists in quantifying expert knowledge in a form suitable for use as a prior model in Bayesian regression. Potential environmental domains for applying this elicitation tool include habitat modeling, assessing detectability or eradication, ecological condition assessments, risk analysis, and quantifying inputs to complex models of ecological processes. The tool has been developed to be user-friendly, extensible, and facilitate consistent and repeatable elicitation of expert knowledge across these various domains. We demonstrate its application to elicitation for logistic regression in a geographically based ecological context. The underlying statistical methodology is also novel, utilizing an indirect elicitation approach to target expert knowledge on a case-by-case basis. For several elicitation sites (or cases), experts are asked simply to quantify their estimated ecological response (e.g. probability of presence), and its range of plausible values, after inspecting (habitat) covariates via GIS.
Resumo:
Cultural objects are increasingly generated and stored in digital form, yet effective methods for their indexing and retrieval still remain an important area of research. The main problem arises from the disconnection between the content-based indexing approach used by computer scientists and the description-based approach used by information scientists. There is also a lack of representational schemes that allow the alignment of the semantics and context with keywords and low-level features that can be automatically extracted from the content of these cultural objects. This paper presents an integrated approach to address these problems, taking advantage of both computer science and information science approaches. We firstly discuss the requirements from a number of perspectives: users, content providers, content managers and technical systems. We then present an overview of our system architecture and describe various techniques which underlie the major components of the system. These include: automatic object category detection; user-driven tagging; metadata transform and augmentation, and an expression language for digital cultural objects. In addition, we discuss our experience on testing and evaluating some existing collections, analyse the difficulties encountered and propose ways to address these problems.
Resumo:
Texture based techniques for visualisation of unsteady vector fields have been applied for the visualisation of a Finite volume model for variably saturated groundwater flow through porous media. This model has been developed by staff in the School of Mathematical Sciences QUT for the study of salt water intrusion into coastal aquifers. This presentation discusses the implementation and effectiveness of the IBFV algorithm in the context of visualisation of the groundwater simulation outputs.
Resumo:
The value of soil evidence in the forensic discipline is well known. However, it would be advantageous if an in-situ method was available that could record responses from tyre or shoe impressions in ground soil at the crime scene. The development of optical fibres and emerging portable NIR instruments has unveiled a potential methodology which could permit such a proposal. The NIR spectral region contains rich chemical information in the form of overtone and combination bands of the fundamental infrared absorptions and low-energy electronic transitions. This region has in the past, been perceived as being too complex for interpretation and consequently was scarcely utilized. The application of NIR in the forensic discipline is virtually non-existent creating a vacancy for research in this area. NIR spectroscopy has great potential in the forensic discipline as it is simple, nondestructive and capable of rapidly providing information relating to chemical composition. The objective of this study is to investigate the ability of NIR spectroscopy combined with Chemometrics to discriminate between individual soils. A further objective is to apply the NIR process to a simulated forensic scenario where soil transfer occurs. NIR spectra were recorded from twenty-seven soils sampled from the Logan region in South-East Queensland, Australia. A series of three high quartz soils were mixed with three different kaolinites in varying ratios and NIR spectra collected. Spectra were also collected from six soils as the temperature of the soils was ramped from room temperature up to 6000C. Finally, a forensic scenario was simulated where the transferral of ground soil to shoe soles was investigated. Chemometrics methods such as the commonly known Principal Component Analysis (PCA), the less well known fuzzy clustering (FC) and ranking by means of multicriteria decision making (MCDM) methodology were employed to interpret the spectral results. All soils were characterised using Inductively Coupled Plasma Optical Emission Spectroscopy and X-Ray Diffractometry. Results were promising revealing NIR combined with Chemometrics is capable of discriminating between the various soils. Peak assignments were established by comparing the spectra of known minerals with the spectra collected from the soil samples. The temperature dependent NIR analysis confirmed the assignments of the absorptions due to adsorbed and molecular bound water. The relative intensities of the identified NIR absorptions reflected the quantitative XRD and ICP characterisation results. PCA and FC analysis of the raw soils in the initial NIR investigation revealed that the soils were primarily distinguished on the basis of their relative quartz and kaolinte contents, and to a lesser extent on the horizon from which they originated. Furthermore, PCA could distinguish between the three kaolinites used in the study, suggesting that the NIR spectral region was sensitive enough to contain information describing variation within kaolinite itself. The forensic scenario simulation PCA successfully discriminated between the ‘Backyard Soil’ and ‘Melcann® Sand’, as well as the two sampling methods employed. Further PCA exploration revealed that it was possible to distinguish between the various shoes used in the simulation. In addition, it was possible to establish association between specific sampling sites on the shoe with the corresponding site remaining in the impression. The forensic application revealed some limitations of the process relating to moisture content and homogeneity of the soil. These limitations can both be overcome by simple sampling practices and maintaining the original integrity of the soil. The results from the forensic scenario simulation proved that the concept shows great promise in the forensic discipline.
Resumo:
Global warming can have a significant impact on the building thermal environment and energy performance. Because greenhouse gas concentrations are still continuing to increase, this warming process will continue and may accelerate. Adaptation to global warming is therefore emerging as one of the key requirements for buildings. This requires all the existing and new buildings not only to perform and operate satisfactorily in the new environment but also to satisfy the environmental performance criteria of sustainability. Through a parametric study using the building simulation technique, this paper investigates the adaptation potential of changing the building internal load densities to the future global warming. Case studies for office buildings in major Australian capital cities are presented. Based on the results of parametric study, possible adaptation strategies are also proposed and evaluated.