136 resultados para Replacement migration
Resumo:
The world is rapidly ageing. It is against this backdrop that there are increasing incidences of dementia reported worldwide, with Alzheimer's disease (AD) being the most common form of dementia in the elderly. It is estimated that AD affects almost 4 million people in the US, and costs the US economy more than 65 million dollars annually. There is currently no cure for AD but various therapeutic agents have been employed in attempting to slow down the progression of the illness, one of which is oestrogen. Over the last decades, scientists have focused mainly on the roles of oestrogen in the prevention and treatment of AD. Newer evidences suggested that testosterone might also be involved in the pathogenesis of AD. Although the exact mechanisms on how androgen might affect AD are still largely unknown, it is known that testosterone can act directly via androgen receptor-dependent mechanisms or indirectly by converting to oestrogen to exert this effect. Clinical trials need to be conducted to ascertain the putative role of androgen replacement in Alzheimer's disease.
Resumo:
There has been much discussion and controversy in the media recently regarding metal toxicity following large head metal on metal (MoM) total hip replacement (THR). Patients have been reported as having hugely elevated levels of metal ions with, at times, devastating systemic, neurolgical and/or orthopaedic sequelae. However, no direct correlation between metal ion level and severity of metallosis has yet been defined. Normative levels of metal ions in well functioning, non Cobalt-Chrome hips have also not been defined to date. The Exeter total hip replacement contains no Cobalt-Chrome (Co-Cr) as it is made entirely from stainless steel. However, small levels of these metals may be present in the modular head of the prosthesis, and their effect on metal ion levels in the well functioning patient has not been investigated. We proposed to define the “normal” levels of metal ions detected by blood test in 20 well functioning patients at a minimum 1 year post primary Exeter total hip replacement, where the patient had had only one joint replaced. Presently, accepted normal levels of blood Chromium are 10–100 nmol/L and plasma Cobalt are 0–20 nmol/L. The UK Modern Humanities Research Association (MHRA) has suggested that levels of either Cobalt or Chromium above 7 ppb (equivalent to 135 nmol/L for Chromium and 120 nmol/L for Cobalt) may be significant. Below this level it is indicated that significant soft tissue reaction and tissue damage is less likely and the risk of implant failure is reduced. Hips were a mixture of cemented and hybrid procedures performed by two experienced orthopaedic consultants. Seventy percent were female, with a mixture of head sizes used. In our cohort, there were no cases where the blood Chromium levels were above the normal range, and in more than 70% of cases, levels were below recordable levels. There were also no cases of elevated plasma Cobalt levels, and in 35% of cases, levels were negligible. We conclude that the implantation with an Exeter total hip replacement does not lead to elevation of blood metal ion levels.
Resumo:
Cell migration is a behaviour critical to many key biological effects, including wound healing, cancerous cell invasion and morphogenesis, the development of an organism from an embryo. However, given that each of these situations is distinctly different and cells are extremely complicated biological objects, interest lies in more basic experiments which seek to remove conflating factors and present a less complex environment within which cell migration can be experimentally examined. These include in vitro studies like the scratch assay or circle migration assay, and ex vivo studies like the colonisation of the hindgut by neural crest cells. The reduced complexity of these experiments also makes them much more enticing as problems to mathematically model, like done here. The primary goal of the mathematical models used in this thesis is to shed light on which cellular behaviours work to generate the travelling waves of invasion observed in these experiments, and to explore how variations in these behaviours can potentially predict differences in this invasive pattern which are experimentally observed when cell types or chemical environment are changed. Relevant literature has already identified the difficulty of distinguishing between these behaviours when using traditional mathematical biology techniques operating on a macroscopic scale, and so here a sophisticated individual-cell-level model, an extension of the Cellular Potts Model (CPM), is been constructed and used to model a scratch assay experiment. This model includes a novel mechanism for dealing with cell proliferations that allowed for the differing properties of quiescent and proliferative cells to be implemented into their behaviour. This model is considered both for its predictive power and used to make comparisons with the travelling waves which result in more traditional macroscopic simulations. These comparisons demonstrate a surprising amount of agreement between the two modelling frameworks, and suggest further novel modifications to the CPM that would allow it to better model cell migration. Considerations of the model’s behaviour are used to argue that the dominant effect governing cell migration (random motility or signal-driven taxis) likely depends on the sort of invasion demonstrated by cells, as easily seen by microscopic photography. Additionally, a scratch assay simulated on a non-homogeneous domain consisting of a ’fast’ and ’slow’ region is also used to further differentiate between these different potential cell motility behaviours. A heterogeneous domain is a novel situation which has not been considered mathematically in this context, nor has it been constructed experimentally to the best of the candidate’s knowledge. Thus this problem serves as a thought experiment used to test the conclusions arising from the simulations on homogeneous domains, and to suggest what might be observed should this non-homogeneous assay situation be experimentally realised. Non-intuitive cell invasion patterns are predicted for diffusely-invading cells which respond to a cell-consumed signal or nutrient, contrasted with rather expected behaviour in the case of random-motility-driven invasion. The potential experimental observation of these behaviours is demonstrated by the individual-cell-level model used in this thesis, which does agree with the PDE model in predicting these unexpected invasion patterns. In the interest of examining such a case of a non-homogeneous domain experimentally, some brief suggestion is made as to how this could be achieved.
Resumo:
Travelling wave phenomena are observed in many biological applications. Mathematical theory of standard reaction-diffusion problems shows that simple partial differential equations exhibit travelling wave solutions with constant wavespeed and such models are used to describe, for example, waves of chemical concentrations, electrical signals, cell migration, waves of epidemics and population dynamics. However, as in the study of cell motion in complex spatial geometries, experimental data are often not consistent with constant wavespeed. Non-local spatial models have successfully been used to model anomalous diffusion and spatial heterogeneity in different physical contexts. In this paper, we develop a fractional model based on the Fisher-Kolmogoroff equation and analyse it for its wavespeed properties, attempting to relate the numerical results obtained from our simulations to experimental data describing enteric neural crest-derived cells migrating along the intact gut of mouse embryos. The model proposed essentially combines fractional and standard diffusion in different regions of the spatial domain and qualitatively reproduces the behaviour of neural crest-derived cells observed in the caecum and the hindgut of mouse embryos during in vivo experiments.
Resumo:
BACKGROUND: US Centers for Disease Control guidelines recommend replacement of peripheral intravenous (IV) catheters no more frequently than every 72 to 96 hours. Routine replacement is thought to reduce the risk of phlebitis and bloodstream infection. Catheter insertion is an unpleasant experience for patients and replacement may be unnecessary if the catheter remains functional and there are no signs of inflammation. Costs associated with routine replacement may be considerable. This is an update of a review first published in 2010. OBJECTIVES: To assess the effects of removing peripheral IV catheters when clinically indicated compared with removing and re-siting the catheter routinely. SEARCH METHODS: For this update the Cochrane Peripheral Vascular Diseases (PVD) Group Trials Search Co-ordinator searched the PVD Specialised Register (December 2012) and CENTRAL (2012, Issue 11). We also searched MEDLINE (last searched October 2012) and clinical trials registries. SELECTION CRITERIA: Randomised controlled trials that compared routine removal of peripheral IV catheters with removal only when clinically indicated in hospitalised or community dwelling patients receiving continuous or intermittent infusions. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and extracted data. MAIN RESULTS: Seven trials with a total of 4895 patients were included in the review. Catheter-related bloodstream infection (CRBSI) was assessed in five trials (4806 patients). There was no significant between group difference in the CRBSI rate (clinically-indicated 1/2365; routine change 2/2441). The risk ratio (RR) was 0.61 but the confidence interval (CI) was wide, creating uncertainty around the estimate (95% CI 0.08 to 4.68; P = 0.64). No difference in phlebitis rates was found whether catheters were changed according to clinical indications or routinely (clinically-indicated 186/2365; 3-day change 166/2441; RR 1.14, 95% CI 0.93 to 1.39). This result was unaffected by whether infusion through the catheter was continuous or intermittent. We also analysed the data by number of device days and again no differences between groups were observed (RR 1.03, 95% CI 0.84 to 1.27; P = 0.75). One trial assessed all-cause bloodstream infection. There was no difference in this outcome between the two groups (clinically-indicated 4/1593 (0.02%); routine change 9/1690 (0.05%); P = 0.21). Cannulation costs were lower by approximately AUD 7.00 in the clinically-indicated group (mean difference (MD) -6.96, 95% CI -9.05 to -4.86; P ≤ 0.00001). AUTHORS' CONCLUSIONS: The review found no evidence to support changing catheters every 72 to 96 hours. Consequently, healthcare organisations may consider changing to a policy whereby catheters are changed only if clinically indicated. This would provide significant cost savings and would spare patients the unnecessary pain of routine re-sites in the absence of clinical indications. To minimise peripheral catheter-related complications, the insertion site should be inspected at each shift change and the catheter removed if signs of inflammation, infiltration, or blockage are present. OBJECTIVES: To assess the effects of removing peripheral IV catheters when clinically indicated compared with removing and re-siting the catheter routinely. SEARCH METHODS: For this update the Cochrane Peripheral Vascular Diseases (PVD) Group Trials Search Co-ordinator searched the PVD Specialised Register (December 2012) and CENTRAL (2012, Issue 11). We also searched MEDLINE (last searched October 2012) and clinical trials registries. SELECTION CRITERIA: Randomised controlled trials that compared routine removal of peripheral IV catheters with removal only when clinically indicated in hospitalised or community dwelling patients receiving continuous or intermittent infusions. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and extracted data. MAIN RESULTS: Seven trials with a total of 4895 patients were included in the review. Catheter-related bloodstream infection (CRBSI) was assessed in five trials (4806 patients). There was no significant between group difference in the CRBSI rate (clinically-indicated 1/2365; routine change 2/2441). The risk ratio (RR) was 0.61 but the confidence interval (CI) was wide, creating uncertainty around the estimate (95% CI 0.08 to 4.68; P = 0.64). No difference in phlebitis rates was found whether catheters were changed according to clinical indications or routinely (clinically-indicated 186/2365; 3-day change 166/2441; RR 1.14, 95% CI 0.93 to 1.39). This result was unaffected by whether infusion through the catheter was continuous or intermittent. We also analysed the data by number of device days and again no differences between groups were observed (RR 1.03, 95% CI 0.84 to 1.27; P = 0.75). One trial assessed all-cause bloodstream infection. There was no difference in this outcome between the two groups (clinically-indicated 4/1593 (0.02%); routine change 9/1690 (0.05%); P = 0.21). Cannulation costs were lower by approximately AUD 7.00 in the clinically-indicated group (mean difference (MD) -6.96, 95% CI -9.05 to -4.86; P ≤ 0.00001). AUTHORS' CONCLUSIONS: The review found no evidence to support changing catheters every 72 to 96 hours. Consequently, healthcare organisations may consider changing to a policy whereby catheters are changed only if clinically indicated. This would provide significant cost savings and would spare patients the unnecessary pain of routine re-sites in the absence of clinical indications. To minimise peripheral catheter-related complications, the insertion site should be inspected at each shift change and the catheter removed if signs of inflammation, infiltration, or blockage are present.
Resumo:
Background & aims: - Excess adiposity (overweight) is one of numerous risk factors for cardiometabolic disease. Most risk reduction strategies for overweight rely on weight loss through dietary energy restriction. However, since the evidence base for long-term successful weight loss interventions is scant, it is important to identify strategies for risk reduction independent of weight loss. The aim of this study was to compare the effects of isoenergetic substitution of dietary saturated fat (SFA) with monounsaturated fat (MUFA) via macadamia nuts on coronary risk compared to usual diet in overweight adults. Methods: - A randomised controlled trial design, maintaining usual energy intake, but manipulating dietary lipid profile in a group of 64 (54 female, 10 male) overweight (BMI > 25), otherwise healthy, subjects. For the intervention group, energy intakes of usual (baseline) diets were calculated from multiple 3 day diet diaries, and SFA was replaced with MUFA (target: 50%E from fat as MUFA) by altering dietary SFA sources and adding macadamia nuts to the diet. Both control and intervention groups received advice on national guidelines for physical activity and adhered to the same protocol for diet diary record keeping and trial consultations. Anthropometric and clinical measures were taken at baseline and at 10 weeks. Results: A significant increase in brachial artery flow-mediated dilation (p < 0.05) was seen in the monounsaturated diet group at week 10 compared to baseline. This corresponded to significant decreases in waist circumference, total cholesterol (p < 0.05), plasma leptin and ICAM-1 (p < 0.01). Conclusions: - In patient subgroups where adherence to dietary energy-reduction is poor, isoenergetic interventions may improve endothelial function and other coronary risk factors without changes in body weight. This trial was registered with the Australia New Zealand Clinical Trial Registry (ACTRN12607000106437).
Resumo:
This introduction to the volume places the study of migration within the wider processes of social change and the complex actions of class, gender and ethnicity that are integrated into the experience of displacement. It argues that the articles in this volume contribute important new ethnographic and theoretical analyses to our knowledge and understanding of the constraints and the opportunities provided by cultural diversity in several societies by elaborating upon recent advances made in conceptualisations of migrancy. It places particular emphasis on developing phenomenological approaches to migration studies which incorporate the lived experience of migrants into any analysis. It also suggests that redressing the neglect of this area of study in Australia has the possibility of generating informed interruptions into the current political shift towards divisive public debates on immigration and cultural pluralism.
Resumo:
Executive Summary This report is the first in-depth exploration of identity and popular culture among Middle Eastern and Asian youth. It documents preliminary research findings on the contribution of Middle Eastern and Asian youth to Sydney’s cultural life and migration heritage. While young people from these communities, the largest migrant communities in NSW, are often negatively portrayed, this research has focused on their social practices of cultural invention, opening up new and creative means of mobilising cultural difference. These young people’s cultural negotiations between migrant family background and the wider society require real engagement with difference and provide rich resources for invigorating the multicultural fabric of the nation. Their repertoire of cultural skills and their involvement in different cultural worlds are often viewed as evidence of not ‘belonging’ to the mainstream or dominant culture. However, the results of our research reveal that the ‘in-betweenness’ of these young people often enables them to move easily between different social and cultural groupings, embracing cultural diversity as inherent and integral to their everyday experience, that is, ‘normal’ to urban life. In this report, we document the changing nature of friendship networks and family relations, the particular meanings and uses of different languages and expressions, and the patterns of consumption of Middle Eastern and Asian youth. In these everyday activities these young people contribute to a changing migration heritage and are redefining what it means to be Australian.
Resumo:
With the increasing popularity of the galvanic replacement approach towards the development of bimetallic nanocatalysts, special emphasis has been focused on minimizing the use of expensive metal (e.g. Pt), in the finally formed nanomaterials (e.g. Ag/Pt system as a possible catalyst for fuel cells). However, the complete removal of the less active sacrificial template is generally not achieved during galvanic replacement, and its residual presence may significantly impact on the electrocatalytic properties of the final material. Here, we investigate the hydrogen evolution reaction (HER) activity of Ag nanocubes replaced with different amounts of Pt, and demonstrate how the bimetallic composition significantly affects the activity of the alloyed nanomaterial.
Resumo:
We demonstrate an unusual shape transformation of Ag nanospheres into {111}-oriented Au–Ag dendritic nanostructures by a galvanic replacement reaction in the ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]).
Resumo:
Galvanic replacement represents a highly significant process for the fabrication of bimetallic materials, but to date its application has been limited to either modification of large area metal surfaces or nanoparticles in solution. Here, the localised surface modification of copper and silver substrates with gold through the galvanic replacement process is reported. This was achieved by generation of a localised flux of AuCl4− ions from a gold ultramicroelectrode tip which interacts with the unbiased substrate of interest. The extent of modification with gold can be controlled through the tip–substrate distance and electrolysis time.
Resumo:
In this study, the reaction of semiconductor microrods of phase I copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with KAuBr4 in acetonitrile is reported. It was found that the reaction is redox in nature and proceeds via a galvanic replacement mechanism in which the surface of CuTCNQ is replaced with metallic gold nanoparticles. Given the slight solubility of CuTCNQ in acetonitrile, two competing reactions, namely CuTCNQ dissolution and the redox reaction with KAuBr4, were found to operate in parallel. An increase in the surface coverage of CuTCNQ microrods with gold nanoparticles occurred with an increased KAuBr4 concentration in acetonitrile, which also inhibited CuTCNQ dissolution. The reaction progress with time was monitored using UV−visible, FT-IR, and Raman spectroscopy as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were investigated for their photocatalytic properties, wherein the destruction of Congo red, an organic dye, by simulated solar light was found dependent on the surface coverage of gold nanoparticles on the CuTCNQ microrods. This method of decorating CuTCNQ may open the possibility of modifying this and other metal-TCNQ charge transfer complexes with a host of other metals which may have significant applications.
Resumo:
The spontaneous reaction between microrods of an organic semiconductor molecule, copper 7,7,8,8-tetracyanoquinodimethane (CuTCNQ) with [AuBr4]− ions in an aqueous environment is reported. The reaction is found to be redox in nature which proceeds via a complex galvanic replacement mechanism, wherein the surface of the CuTCNQ microrods is replaced with metallic gold nanoparticles. Unlike previous reactions reported in acetonitrile, the galvanic replacement reaction in aqueous solution proceeds via an entirely different reaction mechanism, wherein a cyclical reaction mechanism involving continuous regeneration of CuTCNQ consumed during the galvanic replacement reaction occurs in parallel with the galvanic replacement reaction. This results in the driving force of the galvanic replacement reaction in aqueous medium being largely dependent on the availability of [AuBr4]− ions during the reaction. Therefore, this study highlights the importance of the choice of an appropriate solvent during galvanic replacement reactions, which can significantly impact upon the reaction mechanism. The reaction progress with respect to different gold salt concentration was monitored using Fourier transform infrared (FT-IR), Raman, and X-ray photoelectron spectroscopy (XPS), as well as XRD and EDX analysis, and SEM imaging. The CuTCNQ/Au nanocomposites were also investigated for their potential photocatalytic properties, wherein the destruction of the organic dye, Congo red, in a simulated solar light environment was found to be largely dependent on the degree of gold nanoparticle surface coverage. The approach reported here opens up new possibilities of decorating metal–organic charge transfer complexes with a host of metals, leading to potentially novel applications in catalysis and sensing.
Resumo:
The galvanic replacement of isolated nanostructures of copper and silver on conducting supports as well as continuous films of copper with gold is reported. The surface morphology was characterized by scanning electron microscopy and the replacement with gold was confirmed by EDX analysis. It was found that lateral charge propagation during the replacement reaction had a significant effect in all cases. For the isolated nanostructures the deposition of gold was observed not only at the sacrificial template but also at the surrounding unmodified areas of the conducting substrate. In the case of copper films the role of lateral charge propagation was also confirmed by connecting it to an ITO electrode through an external circuit upon which gold deposition was also observed to occur. Interestingly, by inhibiting the rate of charge propagation, through the introduction of a series resistor, the morphology of gold on the copper substrate could be changed from discrete surface decoration with cube like nanoparticles to a more porous rough surface.