79 resultados para Reinforced Concrete Structures
Resumo:
Out-of-plane behaviour of mortared and mortarless masonry walls with various forms of reinforcement, including unreinforced masonry as a base case is examined using a layered shell element based explicit finite element modelling method. Wall systems containing internal reinforcement, external surface reinforcement and intermittently laced reinforced concrete members and unreinforced masonry panels are considered. Masonry is modelled as a layer with macroscopic orthotropic properties; external reinforcing render, grout and reinforcing bars are modelled as distinct layers of the shell element. Predictions from the layered shell model have been validated using several out-of-plane experimental datasets reported in the literature. The model is used to examine the effectiveness of two retrofitting schemes for an unreinforced masonry wall.
Resumo:
Since 1995 the buildingSMART International Alliance for Interoperability (buildingSMART)has developed a robust standard called the Industry Foundation Classes (IFC). IFC is an object oriented data model with related file format that has facilitated the efficient exchange of data in the development of building information models (BIM). The Cooperative Research Centre for Construction Innovation has contributed to the international effort in the development of the IFC standard and specifically the reinforced concrete part of the latest IFC 2x3 release. Industry Foundation Classes have been endorsed by the International Standards Organisation as a Publicly Available Specification (PAS) under the ISO label ISO/PAS 16739. For more details, go to http://www.tc184- sc4.org/About_TC184-SC4/About_SC4_Standards/ The current IFC model covers the building itself to a useful level of detail. The next stage of development for the IFC standard is where the building meets the ground (terrain) and with civil and external works like pavements, retaining walls, bridges, tunnels etc. With the current focus in Australia on infrastructure projects over the next 20 years a logical extension to this standard was in the area of site and civil works. This proposal recognises that there is an existing body of work on the specification of road representation data. In particular, LandXML is recognised as also is TransXML in the broader context of transportation and CityGML in the common interfacing of city maps, buildings and roads. Examination of interfaces between IFC and these specifications is therefore within the scope of this project. That such interfaces can be developed has already been demonstrated in principle within the IFC for Geographic Information Systems (GIS) project. National road standards that are already in use should be carefully analysed and contacts established in order to gain from this knowledge. The Object Catalogue for the Road Transport Sector (OKSTRA) should be noted as an example. It is also noted that buildingSMART Norway has submitted a proposal
Resumo:
The stimulus for this project rose from the need to find an alternative solution to aging superstructures of road-bridge in low volume roads (LVR). The solution investigated, designed and consequently plans to construct, involved replacing an aging super-structure of a 10m span bridge with Flat-Bed Rail Wagon (FBRW). The main focus of this paper is to present alternate structural system for the design of the FBRW as road bridge deck conforming to AS5100. The structural adequacy of the primary members of the FBRW was first validated using full scale experimental investigation to AS5100 serviceability and ultimate limit state loading. The bare FBRW was further developed to include a running surface. Two options were evaluated during the design phase, namely timber and reinforced concrete. First option, which is presented here, involved strengthening of the FBRW using numerous steel sections and overlaying the bridge deck with timber planks. The idea of this approach was to use all the primary and secondary members of the FBRW in load sharing and to provide additional members where weaknesses in the original members arose. The second option, which was the preferred option for construction, involved use of primary members only with an overlaying reinforced concrete slab deck. This option minimised the risk associated with any uncertainty of secondary members to its structural adequacy. The paper will report selected results of the experiment as well as the design phases of option one with conclusions highlighting the viability of option 1 and its limitations.
Resumo:
Axial shortening in vertical load bearing elements of reinforced concrete high-rise buildings is caused by the time dependent effects of shrinkage, creep and elastic shortening of concrete under loads. Such phenomenon has to be predicted at design stage and then updated during and after construction of the buildings in order to provide mitigation against the adverse effects of differential axial shortening among the elements. Existing measuring methods for updating previous predictions of axial shortening pose problems. With this in mind, a innovative procedure with a vibration based parameter called axial shortening index is proposed to update axial shortening of vertical elements based on variations in vibration characteristics of the buildings. This paper presents the development of the procedure and illustrates it through a numerical example of an unsymmetrical high-rise building with two outrigger and belt systems. Results indicate that the method has the capability to capture influence of different tributary areas, shear walls of outrigger and belt systems as well as the geometric complexity of the building.
Resumo:
This study explores three-dimensional nonlineardynamic responses of typical tall buildings with and without setbacks under blast loading. These 20 storey reinforced concrete buildings have been designed for normal (dead, live and wind)loads. The influence of the setbacks on the lateral load response due to blasts in terms of peak deflections, accelerations, inter-storey drift and bending moments at critical locations (including hinge formation) were investigated. Structural response predictions were performed with a commercially available three-dimensional finite element analysis programme using non-linear direct integration time history analyses. Results obtained for buildings with different setbacks were compared and conclusions made. The comparisons revealed that buildings have setbacks that protect the tower part above the setback level from blast loading show considerably better response in terms of peak displacement and interstorey drift, when compared to buildings without setbacks. Rotational accelerations were found to depend on the periods of the rotational modes. Abrupt changes in moments and shears are experienced near the levels of the setbacks. Typical twenty storey tall buildings with shear walls and frames that are designed for only normaln loads perform reasonably well, without catastrophic collapse, when subjected to a blast that is equivalent to 500 kg TNT at a standoff distance of 10 m.
Resumo:
Many ageing road bridges, particularly timber bridges, require urgent improvement due to the demand imposed by the recent version of the Australian bridge loading code, AS 5100. As traffic volume plays a key role in the decision of budget allocations for bridge refurbishment/ replacement, many bridges in low volume traffic network remain in poor condition with axle load and/ or speed restrictions, thus disadvantaging many rural communities. This thesis examines an economical and environmentally sensible option of incorporating disused flat rail wagons (FRW) in the construction of bridges in low volume, high axle load road network. The constructability, economy and structural adequacy of the FRW road bridge is reported in the thesis with particular focus of a demonstration bridge commissioned in regional Queensland. The demonstration bridge comprises of a reinforced concrete slab (RCS) pavement resting on two FRWs with custom designed connection brackets at regular intervals along the span of the bridge. The FRW-RC bridge deck assembly is supported on elastomeric rubber pads resting on the abutment. As this type of bridge replacement technology is new and its structural design is not covered in the design standards, the in-service structural performance of the FRW bridge subjected to the high axle loadings prescribed in AS 5100 is examined through performance load testing. Both the static and the moving load tests are carried out using a fully laden commonly available three-axle tandem truck. The bridge deck is extensively strain gauged and displacement at several key locations is measured using linear variable displacement transducers (LVDTs). A high speed camera is used in the performance test and the digital image data are analysed using proprietary software to capture the locations of the wheel positions on the bridge span accurately. The wheel location is thus synchronised with the displacement and strain time series to infer the structural response of the FRW bridge. Field test data are used to calibrate a grillage model, developed for further analysis of the FRW bridge to various sets of high axle loads stipulated in the bridge design standard. Bridge behaviour predicted by the grillage model has exemplified that the live load stresses of the FRW bridge is significantly lower than the yield strength of steel and the deflections are well below the serviceability limit state set out in AS 5100. Based on the results reported in this thesis, it is concluded that the disused FRWs are competent to resist high axle loading prescribed in AS 5100 and are a viable alternative structural solution of bridge deck in the context of the low volume road networks.
Resumo:
Concrete is commonly used as a primary construction material for tall building construction. Load bearing components such as columns and walls in concrete buildings are subjected to instantaneous and long term axial shortening caused by the time dependent effects of "shrinkage", "creep" and "elastic" deformations. Reinforcing steel content, variable concrete modulus, volume to surface area ratio of the elements and environmental conditions govern axial shortening. The impact of differential axial shortening among columns and core shear walls escalate with increasing building height. Differential axial shortening of gravity loaded elements in geometrically complex and irregular buildings result in permanent distortion and deflection of the structural frame which have a significant impact on building envelopes, building services, secondary systems and the life time serviceability and performance of a building. Existing numerical methods commonly used in design to quantify axial shortening are mainly based on elastic analytical techniques and therefore unable to capture the complexity of non-linear time dependent effect. Ambient measurements of axial shortening using vibrating wire, external mechanical strain, and electronic strain gauges are methods that are available to verify pre-estimated values from the design stage. Installing these gauges permanently embedded in or on the surface of concrete components for continuous measurements during and after construction with adequate protection is uneconomical, inconvenient and unreliable. Therefore such methods are rarely if ever used in actual practice of building construction. This research project has developed a rigorous numerical procedure that encompasses linear and non-linear time dependent phenomena for prediction of axial shortening of reinforced concrete structural components at design stage. This procedure takes into consideration (i) construction sequence, (ii) time varying values of Young's Modulus of reinforced concrete and (iii) creep and shrinkage models that account for variability resulting from environmental effects. The capabilities of the procedure are illustrated through examples. In order to update previous predictions of axial shortening during the construction and service stages of the building, this research has also developed a vibration based procedure using ambient measurements. This procedure takes into consideration the changes in vibration characteristic of structure during and after construction. The application of this procedure is illustrated through numerical examples which also highlight the features. The vibration based procedure can also be used as a tool to assess structural health/performance of key structural components in the building during construction and service life.
Resumo:
A road bridge containing disused flatbed rail wagons as the primary deck superstructure was performance tested in a low volume, high axle load traffic road in Queensland, Australia; some key results are presented in this paper. A fully laden truck of total weight 28.88 % of the serviceability design load prescribed in the Australian bridge code was used; its wheel positions were accurately captured using a high speed camera and synchronised with the real‐time deflections and strains measured at the critical members of the flat rail wagons. The strains remained well below the yield and narrated the existence of composite action between the reinforced concrete slab pavement and the wagon deck. A three dimensional grillage model was developed and calibrated using the test data, which established the structural adequacy of the rail wagons and the positive contribution of the reinforced concrete slab pavement to resist high axle traffic loads on a single lane bridge in the low volume roads network.
Resumo:
This paper presents two novel concepts to enhance the accuracy of damage detection using the Modal Strain Energy based Damage Index (MSEDI) with the presence of noise in the mode shape data. Firstly, the paper presents a sequential curve fitting technique that reduces the effect of noise on the calculation process of the MSEDI, more effectively than the two commonly used curve fitting techniques; namely, polynomial and Fourier’s series. Secondly, a probability based Generalized Damage Localization Index (GDLI) is proposed as a viable improvement to the damage detection process. The study uses a validated ABAQUS finite-element model of a reinforced concrete beam to obtain mode shape data in the undamaged and damaged states. Noise is simulated by adding three levels of random noise (1%, 3%, and 5%) to the mode shape data. Results show that damage detection is enhanced with increased number of modes and samples used with the GDLI.
Resumo:
Daring human nature has already led to the construction of high-rise buildings in naturally challenging geological regions and in worse environments of the world. However; literature review divulges that there is a lag in research of certain generic principles and rules for the prediction of lateral movement in multistorey construction. The present competitive trend orders the best possible used of available construction material and resources. Hence; the mixed used of reinforced concrete with structural steel is gaining prevalence day by day. This paper investigates the effects of Seismic load on composite multistorey building provided with core wall and trusses through FEM modelling. The results showed that increased rigidity corresponds to lower period of vibration and hence higher seismic forces. Since Seismic action is a function of mass and response acceleration, therefore; mass increment generate higher earthquake load and thus cause higher impact base shear and overturning movement. Whereas; wind force depends on building exposed, larger the plan dimension greater is the wind impact. Nonetheless; outriggers trusses noticeably contribute, in improving the serviceability of structure subjected to wind and earthquake forces.
Resumo:
The restoration of Brisbane City Hall is an indication of a society that acknowledges the significance of cultural heritage. Preserving this historical icon required significant funding support, so the rehabilitation process must be thoroughly analysed and validated.
Resumo:
This research is part of a major project with a stimulus that rose from the need to manage a large number of ageing bridges in low traffic volume roads (LTVR) in Australia. The project investigated, designed and consequently constructed, involved replacing an ageing super-structure of a 10m span bridge with a disused Flat-bed Rail Wagon (FRW). This research, therefore, is developed on the premises that the FRW can be adopted as the main structural system for the bridges in LTVR network. The main focus of this research is to present two alternate deck wearing systems (DWS) as part of the design of the FRW as road bridge deck conforming to AS5100 (2004). The bare FRW structural components were first examined for their adequacy (ultimate and serviceability) in resisting the critical loads specified in AS5100(2004). Two options of DWSs were evaluated and their effects on the FRW examined. The first option involved usage of timber DWS; the idea of this option was to use all the primary and secondary members of the FRW in load sharing and to provide additional members where weaknesses in the original members arose. The second option involved usage of reinforced concrete DWS with only the primary members of the FRW sharing the AS5100 (2004) loading. This option inherently minimised the risk associated with any uncertainty of the secondary members to their structural adequacy. This thesis reports the design phases of both options with conclusions of the selection of the ideal option for better structural performance, ease of construction and cost. The comparison carried out here focuses on the distribution of the traffic load by the FRW as a superstructure. Advantages and disadvantages highlighting cost comparisons and ease of constructability of the two systems are also included.
Resumo:
Upgrading old buildings with the evolution of building requirements, this project investigates new approaches that can be applied to strengthen our own heritage buildings using historical and comparative analysis of heritage building restorations locally and abroad. Within the newly developing field of Heritage Engineering, it evaluates the innovative Concrete Overlay technique adapted to building restoration of the Brisbane City Hall. This study aims to extend the application of Concrete Overlay techniques and determine its compatibility specifically to heritage buildings. Concrete overlay involves drilling new reinforcement and placing concrete on top of the existing structure. It is akin to a bone transplant or bone grafting in the case of a human being and has been used by engineers to strengthen newer bridges.