66 resultados para Raphael, 1483-1520.
Resumo:
Background Previously studies showed that inverse dynamics based on motion analysis and force-plate is inaccurate compared to direct measurements for individuals with transfemoral amputation (TFA). Indeed, direct measurements can appropriately take into account the absorption at the prosthetic foot and the resistance at the prosthetic knee. [1-3] However, these studies involved only a passive prosthetic knee. Aim The objective of the present study was to investigate if different types of prosthetic feet and knees can exhibit different levels of error in the knee joint forces and moments. Method Three trials of walking at self-selected speed were analysed for 9 TFAs (7 males and 2 females, 47±9 years old, 1.76±0.1 m 79±17 kg) with a motion analysis system (Qualisys, Goteborg, Sweden), force plates (Kitsler, Winterthur, Switzerland) and a multi-axial transducer (JR3, Woodland, USA) mounted above the prosthetic knee [1-17]. TFAs were all fitted with an osseointegrated implant system. The prostheses included different type of foot (N=5) and knee (N=3) components. The root mean square errors (RMSE) between direct measurements and the knee joint forces and moments estimated by inverse dynamics were computed for stance and swing phases of gait and expressed as a percentage of the measured amplitudes. A one-way Kruskal-Wallis ANOVA was performed (Statgraphics, Levallois-Perret, France) to analyse the effects of the prosthetic components on the RMSEs. Cross-effects and post-hoc tests were not analysed in this study. Results A significant effect (*) was found for the type of prosthetic foot on anterior-posterior force during swing (p=0.016), lateral-medial force during stance (p=0.009), adduction-abduction moment during stance (p=0.038), internal-external rotation moment during stance (p=0.014) and during swing (p=0.006), and flexion-extension moment during stance (p = 0.035). A significant effect (#) was found for the type of prosthetic knee on anterior-posterior force during swing (p=0.018) and adduction-abduction moment during stance (p=0.035). Discussion & Conclusion The RMSEs were larger during swing than during stance. It is because the errors on accelerations (as derived from motion analysis) become substantial with respect to the external loads. Thus, inverse dynamics during swing should be analysed with caution because the mean RMSEs are close to 50%. Conversely, there were fewer effects of the prosthetic components on RMSE during swing than during stance and, accordingly, fewer effects due to knees than feet. Thus, inverse dynamics during stance should be used with caution for comparison of different prosthetic components.
Resumo:
Ankylosing spondylitis (AS) is a common, highly heritable, inflammatory arthritis for which HLA-B*27 is the major genetic risk factor, although its role in the aetiology of AS remains elusive. To better understand the genetic basis of the MHC susceptibility loci, we genotyped 7,264 MHC SNPs in 22,647 AS cases and controls of European descent. We impute SNPs, classical HLA alleles and amino-acid residues within HLA proteins, and tested these for association to AS status. Here we show that in addition to effects due to HLA-B*27 alleles, several other HLA-B alleles also affect susceptibility. After controlling for the associated haplotypes in HLA-B, we observe independent associations with variants in the HLA-A, HLA-DPB1 and HLA-DRB1 loci. We also demonstrate that the ERAP1 SNP rs30187 association is not restricted only to carriers of HLA-B*27 but also found in HLA-B*40:01 carriers independently of HLA-B*27 genotype.
Resumo:
The Australian Naturalistic Driving Study (ANDS), a ground-breaking study of Australian driver behaviour and performance, was officially launched on April 21st, 2015 at UNSW. The ANDS project will provide a realistic perspective on the causes of vehicle crashes and near miss crash events, along with the roles speeding, distraction and other factors have on such events. A total of 360 volunteer drivers across NSW and Victoria - 180 in NSW and 180 in Victoria - will be monitored by a Data Acquisition System (DAS) recording continuously for 4 months their driving behaviour using a suite of cameras and sensors. Participants’ driving behaviour (e.g. gaze), the behaviour of their vehicle (e.g. speed, lane position) and the behaviour of other road users with whom they interact in normal and safety-critical situations will be recorded. Planning of the ANDS commenced over two years ago in June 2013 when the Multi-Institutional Agreement for a grant supporting the equipment purchase and assembly phase was signed by parties involved in this large scale $4 million study (5 university accident research centres, 3 government regulators, 2 third party insurers and 2 industry partners). The program’s second development phase commenced a year later in June 2014 after a second grant was awarded. This paper presents an insider's view into that two year process leading up to the launch, and outlines issues that arose in the set-up phase of the study and how these were addressed. This information will be useful to other organisations considering setting up an NDS.
Resumo:
Introduction and Objectives Joint moments and joint powers during gait are widely used to determine the effects of rehabilitation programs as well as prosthetic fitting. Following the definition of power (dot product of joint moment and joint angular velocity) it has been previously proposed to analyse the 3D angle between both vectors, αMw. Basically, joint power is maximised when both vectors are parallel and cancelled when both vectors are orthogonal. In other words, αMw < 60° reveals a propulsion configuration (more than 50% of the moment contribute to positive power) while αMw > 120° reveals a resistance configuration (more than 50% of the moment contribute to negative power). A stabilisation configuration (less than 50% of the moment contribute to power) corresponds to 60° < αMw < 120°. Previous studies demonstrated that hip joints of able-bodied adults (AB) are mainly in a stabilisation configuration (αMw about 90°) during the stance phase of gait. [1, 2] Individuals with transfemoral amputation (TFA) need to maximise joint power at the hip while controlling the prosthetic knee during stance. Therefore, we tested the hypothesis that TFAs should adopt a strategy that is different from a continuous stabilisation. The objective of this study was to compute joint power and αMw for TFA and to compare them with AB. Methods Three trials of walking at self-selected speed were analysed for 8 TFAs (7 males and 1 female, 46±10 years old, 1.78±0.08 m 82±13 kg) and 8 ABs (males, 25±3 years old, 1.75±0.04, m 67±6 kg). The joint moments are computed from a motion analysis system (Qualisys, Goteborg, Sweden) and a multi-axial transducer (JR3, Woodland, USA) mounted above the prosthetic knee for TFAs and from a motion analysis system (Motion Analysis, Santa Rosa, USA) and force plates (Bertec, Columbus, USA) for ABs. The TFAs were fitted with an OPRA (Integrum, AB, Gothengurg, Sweden) osseointegrated implant system and their prosthetic designs include pneumatic, hydraulic and microprocessor knees. Previous studies showed that the inverse dynamics computed from the multi-axial transducer is the proper method considering the absorption at the foot and resistance at the knee. Results The peak of positive power at loading response (H1) was earlier and lower for TFA compared to AB. Although the joint power is lower, the 3D angle between joint moment and joint angular velocity, αMw, reveals an obvious propulsion configuration (mean αMw about 20°) for TFA compared to a stabilisation configuration (mean αMw about 70°) for AB. The peaks of negative power at midstance (H2) and of positive power at preswing / initial swing (H3) occurred later, lower and longer for TFA compared to AB. Again, the joint powers are lower for TFA but, in this case, αMw is almost comparable (with a time lag), demonstrating a stabilisation (almost a resistance for TFA, mean αMw about 120°) and a propulsion configuration, respectively. The swing phase is not analysed in the present study. Conclusion The analysis of hip joint power may indicate that TFAs demonstrated less propulsion and resistance than ABs during the stance phase of gait. This is true from a quantitative point of view. On the contrary, the 3D angle between joint moment and joint angular velocity, αMw, reveals that TFAs have a remarkable propulsion strategy at loading response and almost a resistance strategy at midstance while ABs adopted a stabilisation strategy. The propulsion configuration, with αMw close to 0°, seems to aim at maximising the positive joint power. The configuration close to resistance, with αMw far from 180°, might aim at unlocking the prosthetic knee before swing while minimising the negative power. This analysis of both joint power and 3D angle between the joint moment and the joint angular velocity provides complementary insights into the gait strategies of TFA that can be used to support evidence-based rehabilitation and fitting of prosthetic components.
Resumo:
This thesis evaluates the security of Supervisory Control and Data Acquisition (SCADA) systems, which are one of the key foundations of many critical infrastructures. Specifically, it examines one of the standardised SCADA protocols called the Distributed Network Protocol Version 3, which attempts to provide a security mechanism to ensure that messages transmitted between devices, are adequately secured from rogue applications. To achieve this, the thesis applies formal methods from theoretical computer science to formally analyse the correctness of the protocol.
Resumo:
Polydimethylsiloxane (PDMS) is the most commonly used material in the manufacture of customized cell culture devices. While there is concern that uncured PDMS oligomers may leach into culture medium and/or hydrophobic molecules may be absorbed into PDMS structures, there is no consensus on how or if PDMS influences cell behaviour. We observed that human umbilical cord blood (CB)-derived CD34+ cells expanded in standard culture medium on PDMS exhibit reduced CD38 surface expression, relative to cells cultured on tissue culture polystyrene (TCP). All-trans retinoic acid (ATRA) induces CD38 expression, and we reasoned that this hydrophobic molecule might be absorbed by PDMS. Through a series of experiments we demonstrated that ATRA-mediated CD38 expression was attenuated when cultures were maintained on PDMS. Medium pre-incubated on PDMS for extended durations resulted in a time-dependant reduction of ATRA in the medium and increasingly attenuated CD38 expression. This indicated a time-dependent absorption of ATRA into the PDMS. To better understand how PDMS might generally influence cell behaviour, Ingenuity Pathway Analysis (IPA) was used to identify potential upstream regulators. This analysis was performed for differentially expressed genes in primary cells including CD34+ haematopoietic progenitor cells, mesenchymal stromal cells (MSC), and keratinocytes, and cell lines including prostate cancer epithelial cells (LNCaP), breast cancer epithelial cells (MCF-7), and myeloid leukaemia cells (KG1a). IPA predicted that the most likely common upstream regulator of perturbed pathways was ATRA. We demonstrate here that ATRA is absorbed by PDMS in a time-dependent manner and results in the concomitant reduced expression of CD38 on the cell surface of CB-derived CD34+ cells.