168 resultados para Ranking de diversificação


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identifying crash “hotspots”, “blackspots”, “sites with promise”, or “high risk” locations is standard practice in departments of transportation throughout the US. The literature is replete with the development and discussion of statistical methods for hotspot identification (HSID). Theoretical derivations and empirical studies have been used to weigh the benefits of various HSID methods; however, a small number of studies have used controlled experiments to systematically assess various methods. Using experimentally derived simulated data—which are argued to be superior to empirical data, three hot spot identification methods observed in practice are evaluated: simple ranking, confidence interval, and Empirical Bayes. Using simulated data, sites with promise are known a priori, in contrast to empirical data where high risk sites are not known for certain. To conduct the evaluation, properties of observed crash data are used to generate simulated crash frequency distributions at hypothetical sites. A variety of factors is manipulated to simulate a host of ‘real world’ conditions. Various levels of confidence are explored, and false positives (identifying a safe site as high risk) and false negatives (identifying a high risk site as safe) are compared across methods. Finally, the effects of crash history duration in the three HSID approaches are assessed. The results illustrate that the Empirical Bayes technique significantly outperforms ranking and confidence interval techniques (with certain caveats). As found by others, false positives and negatives are inversely related. Three years of crash history appears, in general, to provide an appropriate crash history duration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This overview focuses on the application of chemometrics techniques for the investigation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs) and metals because these two important and very diverse groups of pollutants are ubiquitous in soils. The salient features of various studies carried out in the micro- and recreational environments of humans, are highlighted in the context of the various multivariate statistical techniques available across discipline boundaries that have been effectively used in soil studies. Particular attention is paid to techniques employed in the geosciences that may be effectively utilized for environmental soil studies; classical multivariate approaches that may be used in isolation or as complementary methods to these are also discussed. Chemometrics techniques widely applied in atmospheric studies for identifying sources of pollutants or for determining the importance of contaminant source contributions to a particular site, have seen little use in soil studies, but may be effectively employed in such investigations. Suitable programs are also available for suggesting mitigating measures in cases of soil contamination, and these are also considered. Specific techniques reviewed include pattern recognition techniques such as Principal Components Analysis (PCA), Fuzzy Clustering (FC) and Cluster Analysis (CA); geostatistical tools include variograms, Geographical Information Systems (GIS), contour mapping and kriging; source identification and contribution estimation methods reviewed include Positive Matrix Factorisation (PMF), and Principal Component Analysis on Absolute Principal Component Scores (PCA/APCS). Mitigating measures to limit or eliminate pollutant sources may be suggested through the use of ranking analysis and multi criteria decision making methods (MCDM). These methods are mainly represented in this review by studies employing the Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and its associated graphic output, Geometrical Analysis for Interactive Aid (GAIA).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Queensland University of Technology (QUT) Library is partnering with High Performance Computing (HPC) services and the Division of Research and Commercialisation to develop and deliver a range of integrated research support services and systems designed to enhance the research capabilities of the University. Existing and developing research support services include - support for publishing strategies including open access, bibliographic citation and ranking services, research data management, use of online collaboration tools, online survey tools, quantitative and qualitative data analysis, content management and storage solutions. In order to deliver timely and effective research referral and support services, it is imperative that library staff maintain their awareness of, and develop expertise in new eResearch methods and technologies. ---------- METHODS: In 2009/10 QUT Library initiated an online survey for support staff and researchers and a series of focus groups for researchers aimed at gaining a better understanding of current and future eresearch practices and skills. These would better inform the development of a research skills training program and the development of new research support services. The Library and HPC also implemented a program of seminars and workshops designed to introduce key library staff to a broad range of eresearch concepts and technologies. Feedback was obtained after each training session. A number of new services were implemented throughout 2009 and 2010. ---------- RESULTS: Key findings of the survey and focus groups are related to the development of the staff development program. Feedback from program attendees is provided and evaluated. The staff development program is assessed in terms of its success to support the implementation of new research support services. --------- CONCLUSIONS QUT Library has embarked on an ambitious awareness and skills development program to assist Library staff transition a period of rapid change and broadening scope for the Library. Successes and challenges of the program are discussed. A number of recommendations are made in retrospect and also looking forward to the future training needs of Library staff to support the University’s future research goals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Expenditure on R&D in the China construction industry has been relatively low in comparison with many developed countries for a number of years – a situation considered to be a major barrier to the industry’s competitiveness in general and unsatisfactory industry development of the 31 regions involved. A major problem with this is the lack of a sufficiently sophisticated method of objectively evaluating R&D activity in what are quite complex circumstances considering the size and regional differences that exist in this part of the world. A regional construction R&D evaluation system (RCRES) is presented aimed at rectifying the situation. This is based on 12 indicators drawn from the Chinese Government’s R&D Inventory of Resources in consultation with a small group of experts in the field, and further factor analysed into three groups. From this, the required evaluation is obtained by a simple formula. Examination of the results provides a ranking list of the R&D performance of each of the 31 regions, indicating a general disproportion between coastal and inland regions and highlighting regions receiving special emphasis or currently lacking in development. The understanding on this is vital for the future of China’s construction industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims: This study determined whether the visibility benefits of positioning retroreflective strips in biological motion configurations were evident at real world road worker sites. ---------- Methods: 20 visually normal drivers (M=40.3 years) participated in this study that was conducted at two road work sites (one suburban and one freeway) on two separate nights. At each site, four road workers walked in place wearing one of four different clothing options: a) standard road worker night vest, b) standard night vest plus retroreflective strips on thighs, c) standard night vest plus retroreflective strips on ankles and knees, d) standard night vest plus retroreflective strips on eight moveable joints (full biomotion). Participants seated in stationary vehicles at three different distances (80m, 160m, 240m) rated the relative conspicuity of the four road workers using a series of a standardized visibility and ranking scales. ---------- Results: Adding retroreflective strips in the full biomotion configuration to the standard night vest significantly (p<0.001) enhanced perceptions of road worker visibility compared to the standard vest alone, or in combination with thigh retroreflective markings. These visibility benefits were evident at all distances and at both sites. Retroreflective markings at the ankles and knees also provided visibility benefits compared to the standard vest, however, the full biomotion configuration was significantly better than all of the other configurations. ---------- Conclusions: These data provide the first evidence that the benefits of biomotion retroreflective markings that have been previously demonstrated under laboratory and closed- and open-road conditions are also evident at real work sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Airborne fine particles were collected at a suburban site in Queensland, Australia between 1995 and 2003. The samples were analysed for 21 elements, and Positive Matrix Factorisation (PMF), Preference Ranking Organisation METHods for Enrichment Evaluation (PROMETHEE) and Graphical Analysis for Interactive Assistance (GAIA) were applied to the data. PROMETHEE provided information on the ranking of pollutant levels from the sampling years while PMF provided insights into the sources of the pollutants, their chemical composition, most likely locations and relative contribution to the levels of particulate pollution at the site. PROMETHEE and GAIA found that the removal of lead from fuel in the area had a significant impact on the pollution patterns while PMF identified 6 pollution sources including: Railways (5.5%), Biomass Burning (43.3%), Soil (9.2%), Sea Salt (15.6%), Aged Sea Salt (24.4%) and Motor Vehicles (2.0%). Thus the results gave information that can assist in the formulation of mitigation measures for air pollution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparison is widely used in research projects and commercial products whose goal is to motivate energy saving at home. This research builds on fundamental theories from social psychology in an attempt to shed light on how to motivate consumers to conserve energy by providing relevant people for social comparison depending on consumer’s motivation to compare. To support the research process, the mobile application EnergyWiz was developed through a theory-driven design approach. Along with other features EnergyWiz provides users with three types of social comparison – normative, one-on-one and ranking. The results of interviews with prospective users are used to derive design suggestions for relevant people for comparison (comparison subjects).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The progress of technology has led to the increased adoption of energy monitors among household energy consumers. While the monitors available on the market deliver real-time energy usage feedback to the consumer, the format of this data is usually unengaging and mundane. Moreover, it fails to address consumers with different motivations and needs to save and compare energy. This paper presents a study that seeks to provide initial indications for motivation-specific design of energy-related feedback. We focus on comparative feedback supported by a community of energy consumers. In particular, we examine eco-visualisations, temporal self-comparison, norm comparison, one-on-one comparison and ranking, whereby the last three allow us to explore the potential of socialising energy-related feedback. These feedback types were integrated in EnergyWiz – a mobile application that enables users to compare with their past performance, neighbours, contacts from social networking sites and other EnergyWiz users. The application was evaluated in personal, semi-structured interviews, which provided first insights on how to design motivation-related comparative feedback.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Evaluation, selection and finally decision making are all among important issues, which engineers face in long run of projects. Engineers implement mathematical and nonmathematical methods to make accurate and correct decisions, whenever needed. As extensive as these methods are, effects of any selected method on outputs achieved and decisions made are still suspicious. This is more controversial and challengeable, where evaluation is made among non-quantitative alternatives. In civil engineering and construction management problems, criteria include both quantitative and qualitative ones, such as aesthetic, construction duration, building and operation costs, and environmental considerations. As the result, decision making frequently takes place among non-quantitative alternatives. It should be noted that traditional comparison methods, including clear-cut and inflexible mathematics, have always been criticized. This paper demonstrates a brief review of traditional methods of evaluating alternatives. It also offers a new decision making method using, fuzzy calculations. The main focus of this research is some engineering issues, which have flexible nature and vague borders. Suggested method provides analyzability of evaluation for decision makers. It is also capable to overcome multi criteria and multi-referees problems. In order to ease calculations, a program named DeMA is introduced.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hot spot identification (HSID) plays a significant role in improving the safety of transportation networks. Numerous HSID methods have been proposed, developed, and evaluated in the literature. The vast majority of HSID methods reported and evaluated in the literature assume that crash data are complete, reliable, and accurate. Crash under-reporting, however, has long been recognized as a threat to the accuracy and completeness of historical traffic crash records. As a natural continuation of prior studies, the paper evaluates the influence that under-reported crashes exert on HSID methods. To conduct the evaluation, five groups of data gathered from Arizona Department of Transportation (ADOT) over the course of three years are adjusted to account for fifteen different assumed levels of under-reporting. Three identification methods are evaluated: simple ranking (SR), empirical Bayes (EB) and full Bayes (FB). Various threshold levels for establishing hotspots are explored. Finally, two evaluation criteria are compared across HSID methods. The results illustrate that the identification bias—the ability to correctly identify at risk sites--under-reporting is influenced by the degree of under-reporting. Comparatively speaking, crash under-reporting has the largest influence on the FB method and the least influence on the SR method. Additionally, the impact is positively related to the percentage of the under-reported PDO crashes and inversely related to the percentage of the under-reported injury crashes. This finding is significant because it reveals that despite PDO crashes being least severe and costly, they have the most significant influence on the accuracy of HSID.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A distinctive feature of Chinese test is that a Chinese document is a sequence of Chinese with no space or boundary between Chinese words. This feature makes Chinese information retrieval more difficult since a retrieved document which contains the query term as a sequence of Chinese characters may not be really relevant to the query since the query term (as a sequence Chinese characters) may not be a valid Chinese word in that documents. On the other hand, a document that is actually relevant may not be retrieved because it does not contain the query sequence but contains other relevant words. In this research, we propose a hybrid Chinese information retrieval model by incorporating word-based techniques with the traditional character-based techniques. The aim of this approach is to investigate the influence of Chinese segmentation on the performance of Chinese information retrieval. Two ranking methods are proposed to rank retrieved documents based on the relevancy to the query calculated by combining character-based ranking and word-based ranking. Our experimental results show that Chinese segmentation can improve the performance of Chinese information retrieval, but the improvement is not significant if it incorporates only Chinese segmentation with the traditional character-based approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A significant proportion of the cost of software development is due to software testing and maintenance. This is in part the result of the inevitable imperfections due to human error, lack of quality during the design and coding of software, and the increasing need to reduce faults to improve customer satisfaction in a competitive marketplace. Given the cost and importance of removing errors improvements in fault detection and removal can be of significant benefit. The earlier in the development process faults can be found, the less it costs to correct them and the less likely other faults are to develop. This research aims to make the testing process more efficient and effective by identifying those software modules most likely to contain faults, allowing testing efforts to be carefully targeted. This is done with the use of machine learning algorithms which use examples of fault prone and not fault prone modules to develop predictive models of quality. In order to learn the numerical mapping between module and classification, a module is represented in terms of software metrics. A difficulty in this sort of problem is sourcing software engineering data of adequate quality. In this work, data is obtained from two sources, the NASA Metrics Data Program, and the open source Eclipse project. Feature selection before learning is applied, and in this area a number of different feature selection methods are applied to find which work best. Two machine learning algorithms are applied to the data - Naive Bayes and the Support Vector Machine - and predictive results are compared to those of previous efforts and found to be superior on selected data sets and comparable on others. In addition, a new classification method is proposed, Rank Sum, in which a ranking abstraction is laid over bin densities for each class, and a classification is determined based on the sum of ranks over features. A novel extension of this method is also described based on an observed polarising of points by class when rank sum is applied to training data to convert it into 2D rank sum space. SVM is applied to this transformed data to produce models the parameters of which can be set according to trade-off curves to obtain a particular performance trade-off.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human hair fibres are ubiquitous in nature and are found frequently at crime scenes often as a result of exchange between the perpetrator, victim and/or the surroundings according to Locard's Principle. Therefore, hair fibre evidence can provide important information for crime investigation. For human hair evidence, the current forensic methods of analysis rely on comparisons of either hair morphology by microscopic examination or nuclear and mitochondrial DNA analyses. Unfortunately in some instances the utilisation of microscopy and DNA analyses are difficult and often not feasible. This dissertation is arguably the first comprehensive investigation aimed to compare, classify and identify the single human scalp hair fibres with the aid of FTIR-ATR spectroscopy in a forensic context. Spectra were collected from the hair of 66 subjects of Asian, Caucasian and African (i.e. African-type). The fibres ranged from untreated to variously mildly and heavily cosmetically treated hairs. The collected spectra reflected the physical and chemical nature of a hair from the near-surface particularly, the cuticle layer. In total, 550 spectra were acquired and processed to construct a relatively large database. To assist with the interpretation of the complex spectra from various types of human hair, Derivative Spectroscopy and Chemometric methods such as Principal Component Analysis (PCA), Fuzzy Clustering (FC) and Multi-Criteria Decision Making (MCDM) program; Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA); were utilised. FTIR-ATR spectroscopy had two important advantages over to previous methods: (i) sample throughput and spectral collection were significantly improved (no physical flattening or microscope manipulations), and (ii) given the recent advances in FTIR-ATR instrument portability, there is real potential to transfer this work.s findings seamlessly to on-field applications. The "raw" spectra, spectral subtractions and second derivative spectra were compared to demonstrate the subtle differences in human hair. SEM images were used as corroborative evidence to demonstrate the surface topography of hair. It indicated that the condition of the cuticle surface could be of three types: untreated, mildly treated and treated hair. Extensive studies of potential spectral band regions responsible for matching and discrimination of various types of hair samples suggested the 1690-1500 cm-1 IR spectral region was to be preferred in comparison with the commonly used 1750-800 cm-1. The principal reason was the presence of the highly variable spectral profiles of cystine oxidation products (1200-1000 cm-1), which contributed significantly to spectral scatter and hence, poor hair sample matching. In the preferred 1690-1500 cm-1 region, conformational changes in the keratin protein attributed to the α-helical to β-sheet transitions in the Amide I and Amide II vibrations and played a significant role in matching and discrimination of the spectra and hence, the hair fibre samples. For gender comparison, the Amide II band is significant for differentiation. The results illustrated that the male hair spectra exhibit a more intense β-sheet vibration in the Amide II band at approximately 1511 cm-1 whilst the female hair spectra displayed more intense α-helical vibration at 1520-1515cm-1. In terms of chemical composition, female hair spectra exhibit greater intensity of the amino acid tryptophan (1554 cm-1), aspartic and glutamic acid (1577 cm-1). It was also observed that for the separation of samples based on racial differences, untreated Caucasian hair was discriminated from Asian hair as a result of having higher levels of the amino acid cystine and cysteic acid. However, when mildly or chemically treated, Asian and Caucasian hair fibres are similar, whereas African-type hair fibres are different. In terms of the investigation's novel contribution to the field of forensic science, it has allowed for the development of a novel, multifaceted, methodical protocol where previously none had existed. The protocol is a systematic method to rapidly investigate unknown or questioned single human hair FTIR-ATR spectra from different genders and racial origin, including fibres of different cosmetic treatments. Unknown or questioned spectra are first separated on the basis of chemical treatment i.e. untreated, mildly treated or chemically treated, genders, and racial origin i.e. Asian, Caucasian and African-type. The methodology has the potential to complement the current forensic analysis methods of fibre evidence (i.e. Microscopy and DNA), providing information on the morphological, genetic and structural levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photochemistry has made significant contributions to our understanding of many important natural processes as well as the scientific discoveries of the man-made world. The measurements from such studies are often complex and may require advanced data interpretation with the use of multivariate or chemometrics methods. In general, such methods have been applied successfully for data display, classification, multivariate curve resolution and prediction in analytical chemistry, environmental chemistry, engineering, medical research and industry. However, in photochemistry, by comparison, applications of such multivariate approaches were found to be less frequent although a variety of methods have been used, especially with spectroscopic photochemical applications. The methods include Principal Component Analysis (PCA; data display), Partial Least Squares (PLS; prediction), Artificial Neural Networks (ANN; prediction) and several models for multivariate curve resolution related to Parallel Factor Analysis (PARAFAC; decomposition of complex responses). Applications of such methods are discussed in this overview and typical examples include photodegradation of herbicides, prediction of antibiotics in human fluids (fluorescence spectroscopy), non-destructive in- and on-line monitoring (near infrared spectroscopy) and fast-time resolution of spectroscopic signals from photochemical reactions. It is also quite clear from the literature that the scope of spectroscopic photochemistry was enhanced by the application of chemometrics. To highlight and encourage further applications of chemometrics in photochemistry, several additional chemometrics approaches are discussed using data collected by the authors. The use of a PCA biplot is illustrated with an analysis of a matrix containing data on the performance of photocatalysts developed for water splitting and hydrogen production. In addition, the applications of the Multi-Criteria Decision Making (MCDM) ranking methods and Fuzzy Clustering are demonstrated with an analysis of water quality data matrix. Other examples of topics include the application of simultaneous kinetic spectroscopic methods for prediction of pesticides, and the use of response fingerprinting approach for classification of medicinal preparations. In general, the overview endeavours to emphasise the advantages of chemometrics' interpretation of multivariate photochemical data, and an Appendix of references and summaries of common and less usual chemometrics methods noted in this work, is provided. Crown Copyright © 2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intuitively, any ‘bag of words’ approach in IR should benefit from taking term dependencies into account. Unfortunately, for years the results of exploiting such dependencies have been mixed or inconclusive. To improve the situation, this paper shows how the natural language properties of the target documents can be used to transform and enrich the term dependencies to more useful statistics. This is done in three steps. The term co-occurrence statistics of queries and documents are each represented by a Markov chain. The paper proves that such a chain is ergodic, and therefore its asymptotic behavior is unique, stationary, and independent of the initial state. Next, the stationary distribution is taken to model queries and documents, rather than their initial distributions. Finally, ranking is achieved following the customary language modeling paradigm. The main contribution of this paper is to argue why the asymptotic behavior of the document model is a better representation then just the document’s initial distribution. A secondary contribution is to investigate the practical application of this representation in case the queries become increasingly verbose. In the experiments (based on Lemur’s search engine substrate) the default query model was replaced by the stable distribution of the query. Just modeling the query this way already resulted in significant improvements over a standard language model baseline. The results were on a par or better than more sophisticated algorithms that use fine-tuned parameters or extensive training. Moreover, the more verbose the query, the more effective the approach seems to become.