77 resultados para Railroad passenger cars
Resumo:
Transit passenger market segmentation enables transit operators to target different classes of transit users for targeted surveys and various operational and strategic planning improvements. However, the existing market segmentation studies in the literature have been generally done using passenger surveys, which have various limitations. The smart card (SC) data from an automated fare collection system facilitate the understanding of the multiday travel pattern of transit passengers and can be used to segment them into identifiable types of similar behaviors and needs. This paper proposes a comprehensive methodology for passenger segmentation solely using SC data. After reconstructing the travel itineraries from SC transactions, this paper adopts the density-based spatial clustering of application with noise (DBSCAN) algorithm to mine the travel pattern of each SC user. An a priori market segmentation approach then segments transit passengers into four identifiable types. The methodology proposed in this paper assists transit operators to understand their passengers and provides them oriented information and services.
Resumo:
This paper presents a novel framework for the modelling of passenger facilitation in a complex environment. The research is motivated by the challenges in the airport complex system, where there are multiple stakeholders, differing operational objectives and complex interactions and interdependencies between different parts of the airport system. Traditional methods for airport terminal modelling do not explicitly address the need for understanding causal relationships in a dynamic environment. Additionally, existing Bayesian Network (BN) models, which provide a means for capturing causal relationships, only present a static snapshot of a system. A method to integrate a BN complex systems model with stochastic queuing theory is developed based on the properties of the Poisson and exponential distributions. The resultant Hybrid Queue-based Bayesian Network (HQBN) framework enables the simulation of arbitrary factors, their relationships, and their effects on passenger flow and vice versa. A case study implementation of the framework is demonstrated on the inbound passenger facilitation process at Brisbane International Airport. The predicted outputs of the model, in terms of cumulative passenger flow at intermediary and end points in the inbound process, are found to have an R2 goodness of fit of 0.9994 and 0.9982 respectively over a 10 h test period. The utility of the framework is demonstrated on a number of usage scenarios including causal analysis and ‘what-if’ analysis. This framework provides the ability to analyse and simulate a dynamic complex system, and can be applied to other socio-technical systems such as hospitals.
Resumo:
This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Resumo:
This presentation investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.
Resumo:
This paper investigates stochastic analysis of transit segment hourly passenger load factor variation for transit capacity and quality of service (QoS) analysis using Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia. It compares stochastic analysis to traditional peak hour factor (PHF) analysis to gain further insight into variability of transit route segments’ passenger loading during a study hour. It demonstrates that hourly design load factor is a useful method of modeling a route segment’s capacity and QoS time history across the study weekday. This analysis method is readily adaptable to different passenger load standards by adjusting design percentile, reflecting either a more relaxed or more stringent condition. This paper also considers hourly coefficient of variation of load factor as a capacity and QoS assessment measure, in particular through its relationships with hourly average and design load factors. Smaller value reflects uniform passenger loading, which is generally indicative of well dispersed passenger boarding demands and good schedule maintenance. Conversely, higher value may be indicative of pulsed or uneven passenger boarding demands, poor schedule maintenance, and/or bus bunching. An assessment table based on hourly coefficient of variation of load factor is developed and applied to this case study. Inferences are drawn for a selection of study hours across the weekday studied.
Resumo:
This study uses weekday Automatic Fare Collection (AFC) data on a premium bus line in Brisbane, Australia •Stochastic analysis is compared to peak hour factor (PHF) analysis for insight into passenger loading variability •Hourly design load factor (e.g. 88th percentile) is found to be a useful method of modeling a segment’s passenger demand time-history across a study weekday, for capacity and QoS assessment •Hourly coefficient of variation of load factor is found to be a useful QoS and operational assessment measure, particularly through its relationship with hourly average load factor, and with design load factor •An assessment table based on hourly coefficient of variation of load factor is developed from the case study
Resumo:
Many cyclist deaths and serious injuries result from rear-end or sideswipe collisions involving a car or heavy vehicle. As a consequence, minimum passing distance laws (often referred to as ‘one metre rules’) have been introduced in a number of U.S. states along with European countries such as France, Belgium and Spain. A two-year trial of a minimum passing distance rule is underway in Queensland. The international studies show that while the average passing distance is more than one metre, significant proportions of passes occur at less than this distance. Average passing distances are greater with wider lanes, when bicycle lanes are present, for cars rather than vans or trucks, and (possibly) at higher speed limits. Perceived characteristics of the cyclist (other than gender) appear to have little effect on passing distances. The research questions the ability to judge lateral distance and whether nominated distances predict on-road behaviour. Cyclists have strong concerns about drivers passing too close but the extent to which this behaviour reflects deliberate intimidation versus an inability to judge what is a safe passing distance is not clear. There has been no systematic evaluation of the road safety benefits of minimum passing distance laws. These laws have received little police enforcement but it is unclear whether enforcement is necessary for them to be effective.
Resumo:
Group interaction within crowds is a common phenomenon and has great influence on pedestrian behaviour. This paper investigates the impact of passenger group dynamics using an agent-based simulation method for the outbound passenger process at airports. Unlike most passenger-flow models that treat passengers as individual agents, the proposed model additionally incorporates their group dynamics as well. The simulation compares passenger behaviour at airport processes and discretionary services under different group formations. Results from experiments (both qualitative and quantitative) show that incorporating group attributes, in particular, the interactions with fellow travellers and wavers can have significant influence on passengers activity preference as well as the performance and utilisation of services in airport terminals. The model also provides a convenient way to investigate the effectiveness of airport space design and service allocations, which can contribute to positive passenger experiences. The model was created using AnyLogic software and its parameters were initialised using recent research data published in the literature.
Resumo:
Recent changes in the aviation industry and in the expectations of travellers have begun to alter the way we approach our understanding, and thus the segmentation, of airport passengers. The key to successful segmentation of any population lies in the selection of the criteria on which the partitions are based. Increasingly, the basic criteria used to segment passengers (purpose of trip and frequency of travel) no longer provide adequate insights into the passenger experience. In this paper, we propose a new model for passenger segmentation based on the passenger core value, time. The results are based on qualitative research conducted in-situ at Brisbane International Terminal during 2012-2013. Based on our research, a relationship between time sensitivity and degree of passenger engagement was identified. This relationship was used as the basis for a new passenger segmentation model, namely: Airport Enthusiast (engaged, non time sensitive); Time Filler (non engaged, non time sensitive); Efficiency Lover (non engaged, time sensitive) and Efficient Enthusiast (engaged, time sensitive). The outcomes of this research extend the theoretical knowledge about passenger experience in the terminal environment. These new insights can ultimately be used to optimise the allocation of space for future terminal planning and design.
Resumo:
The importance of passenger experience in aviation has become well understood in the last several years. It is now generally accepted that the provision of good passenger experience is not an option, but a necessity, from an aviation profitability perspective. In this paper, we paint a picture of the future passenger experience by consolidating a number of industry and research perspectives. Using the future passenger experience as a starting point, we explore the components needed to enable this future vision. From this bottom-up approach, we identify the need to resolve data formatting and data ownership issues. The resolution of these data integration issues is necessary to enable the seamless future travel experience that is envisioned by the aviation industry. By looking at the passenger experience from this bottom-up, data centric perspective, we identify a potential shift in the way that future passenger terminals will be designed. Whereas currently the design of terminals is largely an architectural practice, in the near future, the design of the terminal building may become more of a virtual technology practice. This of course will pose a new set of challenges to designers of airport terminal environments.
Resumo:
The effect of passenger satisfaction on airport profitability has been widely acknowledged in the aviation industry. As a result, there has been much attention directed towards developing a deeper understanding of the factors that influence the passenger experience. In this paper, we explore passenger experience from a novel perspective - that of the activities expected to be undertaken by passengers while in the airport terminal building. Using the Taxonomy of Passenger Experience (TOPA) as our framework, we look at the pre-travel interview data of 48 participants. The results of our analysis are used to construct an activity-centred account of the expected passenger experience for international departures. Our exploration of the expected passenger experienced revealed that not all of the TOPA activities have an equal impact on the passengers' expected experience. The processing, consumptive, preparatory and queuing activity groups featured most prominently in passengers' accounts of their upcoming airport experiences. Of these, the preparatory category was found to have the most direct impact on passenger satisfaction. Additionally, our analysis indicated that utilising queue time to prepare passengers for upcoming processing activities could have a positive effect on both satisfaction and processing efficiency. A further outcome of this research was the observation that "shopping" did not form a part of the expected experience of any of the interviewed participants. The outcomes of this study can be used by airports to assist in the management of passengers' expected experience in the terminal building. As passenger expectations and passenger satisfaction are intrinsically linked, understanding which activities have the most impact on satisfaction provides a basis from which alternate design choices can be evaluated when constructing, or fine-tuning, airport terminal designs.
Resumo:
The air transport industry is a complex environment facing many challenges while coping with changing global imperatives. International airport passenger facilitation is a part of the socio-technical system where these challenges manifest, impacting businesses in terms of time, cost and quality. This research inductively develops an extensible configurable reference model by capturing and merging the cross-organisational facilitation process from five Australian airports. The reference model can be filtered according to the contextual needs of airport users to inform relevant and accurate business process design. The domain and methodological contributions constitute the first reported application of questionnaire-based configurability to airport processes.
Resumo:
Assessing airport service performance requires understanding of a complete set of passenger experiences covering all activities from departures to arrivals. Weight-based indicator models allow passengers to express their priority on certain evaluation criteria (airport domains) and their service attributes over the others. The application of multilevel regression analysis in questionnaire design is expected to overcome limitations of traditional questionnaires, which require application of all indicators with equal weight. The development of a Taxonomy of Passenger Activities (TOPA), which captures all passenger processing and discretionary activities, has provided a novel perspective in understanding passenger experience in various airport domains. Based on further literature reviews on various service attributes at airport passenger terminals, this paper constitutes questionnaire design to employ a weighting method for all activities from the time passengers enter an airport domain at the departure terminal until leaving the arrival terminal (i.e. seven airport domains for departure, four airport domains during transit, and seven airport domains for arrival). The procedure of multilevel regression analysis is aimed not only at identifying the ranking of each evaluation criterion from the most important to the least important but also to explain the relationship between service attributes in each airport domain and overall service performance.
Resumo:
This paper presents the validation of a manoeuvring model for a novel 127m-vehicle-passenger trimaran via full scale trials. The adopted structure of the model is based on a model previously proposed in the literature with some simplifications. The structure of the model is discussed. Then initial parameter estimates are computed, and the final set of parameters are obtained via adjustments based on engineering judgement and application of a genetic algorithm so as to match the data of the trials. The validity of the model is also assessed with data from a trial different from the one use for the parameter adjustment. The model shows good agreement with the trial data.
Resumo:
This paper investigates quality of service (QoS) and resource productivity implications of transit route passenger loading and travel time. It highlights the value of occupancy load factor as a direct passenger comfort QoS measure. Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate time series correlation between occupancy load factor and passenger average travel time. Correlation is strong across the entire span of service in both directions. Passengers tend to be making longer, peak direction commuter trips under significantly less comfortable conditions than off-peak. The Transit Capacity and Quality of Service Manual uses segment based load factor as a measure of onboard loading comfort QoS. This paper provides additional insight into QoS by relating the two route based dimensions of occupancy load factor and passenger average travel time together in a two dimensional format, both from the passenger’s and operator’s perspectives. Future research will apply Value of Time to QoS measurement, reflecting perceived passenger comfort through crowding and average time spent onboard. This would also assist in transit service quality econometric modeling. The methodology can be readily applied in a practical setting where AFC data for fixed scheduled routes is available. The study outcomes also provide valuable research and development directions.