65 resultados para Radical cyclization
Resumo:
In a previous paper, we described the room temperature rapid, selective, reversible, and near quantitative Cu-activated nitroxide radical coupling (NRC) technique to prepare 3-arm polystyrene stars. In this work, we evaluated the Cu-activation mechanism, either conventional atom transfer or single electron transfer (SET), through kinetic simulations. Simulation data showed that one can describe the system by either activation mechanism. We also found through simulations that bimolecular radical termination, regardless of activation mechanism, was extremely low and could be considered negligible in an NRC reaction. Experiments were carried out to form 2- and 3-arm PSTY stars using two ligands, PMDETA and Me6TREN, in a range of solvent conditions by varying the ratio of DMSO to toluene, and over a wide temperature range. The rate of 2- or 3-arm star formation was governed by the choice of solvent and ligand. The combination of Me6TREN and toluene/DMSO showed a relatively temperature independent rate, and remarkably reached near quantitative yields for 2-arm star formation after only 1 min at 25 °C.
Resumo:
The single electron transfer-nitroxide radical coupling (SET-NRC) reaction has been used to produce multiblock polymers with high molecular weights in under 3 min at 50◦C by coupling a difunctional telechelic polystyrene (Br-PSTY-Br)with a dinitroxide. The well known combination of dimethyl sulfoxide as solvent and Me6TREN as ligand facilitated the in situ disproportionation of CuIBr to the highly active nascent Cu0 species. This SET reaction allowed polymeric radicals to be rapidly formed from their corresponding halide end-groups. Trapping of these carbon-centred radicals at close to diffusion controlled rates by dinitroxides resulted in high-molecular-weight multiblock polymers. Our results showed that the disproportionation of CuI was critical in obtaining these ultrafast reactions, and confirmed that activation was primarily through Cu0. We took advantage of the reversibility of the NRC reaction at elevated temperatures to decouple the multiblock back to the original PSTY building block through capping the chain-ends with mono-functional nitroxides. These alkoxyamine end-groups were further exchanged with an alkyne mono-functional nitroxide (TEMPO–≡) and ‘clicked’ by a CuI-catalyzed azide/alkyne cycloaddition (CuAAC) reaction with N3–PSTY–N3 to reform the multiblocks. This final ‘click’ reaction, even after the consecutive decoupling and nitroxide-exchange reactions, still produced high molecular-weight multiblocks efficiently. These SET-NRC reactions would have ideal applications in re-usable plastics and possibly as self-healing materials.
Resumo:
High activation of polystyrene with bromine end groups (PSTY-Br) to their incipient radicals occurred in the presence of Cu(I)Br, Me6TREN, and DMSO solvent. These radicals were then trapped by nitroxide species leading to coupling reactions between PSTY-Br and nitroxides that were ultrafast and selective in the presence of a diverse range of functional groups. The nitroxide radical coupling (NRC) reactions have the attributes of a “click” reaction with near quantitative yields of product formed, but through the reversibility of this reaction, it has the added advantage of permitting the exchange of chemical functionality on macromolecules. Conditions were chosen to facilitate the disproportionation of Cu(I)Br to the highly activating nascent Cu(0) and deactivating Cu(II)Br2 in the presence of DMSO solvent and Me6TREN ligand. NRC at room temperature gave near quantitative yields of macromolecular coupling of low molecular weight polystyrene with bromine chain-ends (PSTY-Br) and nitroxides in under 7 min even in the presence of functional groups (e.g., −≡, −OH, −COOH, −NH2, =O). Utilization of the reversibility of the NRC reaction at elevated temperatures allowed the exchange of chain-end groups with a variety of functional nitroxide derivatives. The robustness and orthogonality of this NRC reaction were further demonstrated using the Cu-catalyzed azide/alkyne “click” (CuAAC) reactions, in which yields greater than 95% were observed for coupling between PSTY-N3 and a PSTY chain first trapped with an alkyne functional TEMPO (PSTY-TEMPO-≡).
Resumo:
The integration of technology in care is core business in nursing and this role requires that we must understand and use technology informed by evidence that goes much deeper and broader than actions and behaviours. We need to delve more deeply into its complexity because there is nothing minor or insignificant about technology as a major influence in healthcare outcomes and experiences. Evidence is needed that addresses technology and nursing from perspectives that examine the effects of technology, especially related to increasing demands for efficiency, the relationship of technology to nursing and caring, and a range of philosophical questions associated with empowering people in their healthcare choices. Specifically, there is a need to confront in practice the ways technique influences care. Technique is the creation of a kind of thinking that is necessary for contemporary healthcare technology to develop and be applied in an efficient and rational manner. Technique is not an entity or specific thing, but rather a way of thinking that seeks to shape and organize nursing activity, and manage efficiently individual difference(s) in care. It emphasizes predetermined causal relationships, conformity, and sameness of product, process, and thought. In response is needed a radical vision of nursing that attempts in a real sense to ensure we meet the needs of individuals and their community. Activism and advocacy are needed, and a willingness to create a certain detachment from the imperatives that technique demands. It is argued that our responsibility as nurses is to respond in practice to the errors, advantages, difficulties, and temptations of technology for the benefit of those who most need our assistance and care.
Resumo:
Arts education research, as an interdisciplinary field, has developed in the shadows of a number of research traditions. However amid all the methodological innovation, I believe there is one particular, distinctive and radical research strategy which arts educators have created to research the practice of arts education: namely arts-based research. For many, and Elliot Eisner from Stanford University was among the first, arts education needed a research approach which could deal with the complex dynamics of arts education in the classroom. What was needed was ‘an approach to the conduct of educational research that was rooted in the arts and that used aesthetically crafted forms to reveal aspects of practice that mattered educationally’ (Eisner 2006: 11). While arts education researchers were crafting the principles and practices of arts-based research, fellow artist/researchers in the creative arts were addressing similar needs and fashioning their own exacting research strategies. This chapter aligns arts-based research with the complementary research practices established in creative arts studios and identifies the shared and truly radical nature of these moves. Finally, and in a contemporary turn many will find surprising, I will discuss how the radical aspects of these methodologies are now being held up as core elements of what is being called the fourth paradigm of scientific research, known as eScience. Could it be that the radical dynamics of arts-based research pre-figured the needs of eScience researchers who are currently struggling to manage the ‘deluge of Big Data’ which is disrupting their well-established scientific methods?