167 resultados para Quantitative Real-time Pcr


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real‐time kinematic (RTK) GPS techniques have been extensively developed for applications including surveying, structural monitoring, and machine automation. Limitations of the existing RTK techniques that hinder their applications for geodynamics purposes are twofold: (1) the achievable RTK accuracy is on the level of a few centimeters and the uncertainty of vertical component is 1.5–2 times worse than those of horizontal components and (2) the RTK position uncertainty grows in proportional to the base‐torover distances. The key limiting factor behind the problems is the significant effect of residual tropospheric errors on the positioning solutions, especially on the highly correlated height component. This paper develops the geometry‐specified troposphere decorrelation strategy to achieve the subcentimeter kinematic positioning accuracy in all three components. The key is to set up a relative zenith tropospheric delay (RZTD) parameter to absorb the residual tropospheric effects and to solve the established model as an ill‐posed problem using the regularization method. In order to compute a reasonable regularization parameter to obtain an optimal regularized solution, the covariance matrix of positional parameters estimated without the RZTD parameter, which is characterized by observation geometry, is used to replace the quadratic matrix of their “true” values. As a result, the regularization parameter is adaptively computed with variation of observation geometry. The experiment results show that new method can efficiently alleviate the model’s ill condition and stabilize the solution from a single data epoch. Compared to the results from the conventional least squares method, the new method can improve the longrange RTK solution precision from several centimeters to the subcentimeter in all components. More significantly, the precision of the height component is even higher. Several geosciences applications that require subcentimeter real‐time solutions can largely benefit from the proposed approach, such as monitoring of earthquakes and large dams in real‐time, high‐precision GPS leveling and refinement of the vertical datum. In addition, the high‐resolution RZTD solutions can contribute to effective recovery of tropospheric slant path delays in order to establish a 4‐D troposphere tomography.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A trend in design and implementation of modern industrial automation systems is to integrate computing, communication and control into a unified framework at different levels of machine/factory operations and information processing. These distributed control systems are referred to as networked control systems (NCSs). They are composed of sensors, actuators, and controllers interconnected over communication networks. As most of communication networks are not designed for NCS applications, the communication requirements of NCSs may be not satisfied. For example, traditional control systems require the data to be accurate, timely and lossless. However, because of random transmission delays and packet losses, the control performance of a control system may be badly deteriorated, and the control system rendered unstable. The main challenge of NCS design is to both maintain and improve stable control performance of an NCS. To achieve this, communication and control methodologies have to be designed. In recent decades, Ethernet and 802.11 networks have been introduced in control networks and have even replaced traditional fieldbus productions in some real-time control applications, because of their high bandwidth and good interoperability. As Ethernet and 802.11 networks are not designed for distributed control applications, two aspects of NCS research need to be addressed to make these communication networks suitable for control systems in industrial environments. From the perspective of networking, communication protocols need to be designed to satisfy communication requirements for NCSs such as real-time communication and high-precision clock consistency requirements. From the perspective of control, methods to compensate for network-induced delays and packet losses are important for NCS design. To make Ethernet-based and 802.11 networks suitable for distributed control applications, this thesis develops a high-precision relative clock synchronisation protocol and an analytical model for analysing the real-time performance of 802.11 networks, and designs a new predictive compensation method. Firstly, a hybrid NCS simulation environment based on the NS-2 simulator is designed and implemented. Secondly, a high-precision relative clock synchronization protocol is designed and implemented. Thirdly, transmission delays in 802.11 networks for soft-real-time control applications are modeled by use of a Markov chain model in which real-time Quality-of- Service parameters are analysed under a periodic traffic pattern. By using a Markov chain model, we can accurately model the tradeoff between real-time performance and throughput performance. Furthermore, a cross-layer optimisation scheme, featuring application-layer flow rate adaptation, is designed to achieve the tradeoff between certain real-time and throughput performance characteristics in a typical NCS scenario with wireless local area network. Fourthly, as a co-design approach for both a network and a controller, a new predictive compensation method for variable delay and packet loss in NCSs is designed, where simultaneous end-to-end delays and packet losses during packet transmissions from sensors to actuators is tackled. The effectiveness of the proposed predictive compensation approach is demonstrated using our hybrid NCS simulation environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Automated visual surveillance of crowds is a rapidly growing area of research. In this paper we focus on motion representation for the purpose of abnormality detection in crowded scenes. We propose a novel visual representation called textures of optical flow. The proposed representation measures the uniformity of a flow field in order to detect anomalous objects such as bicycles, vehicles and skateboarders; and can be combined with spatial information to detect other forms of abnormality. We demonstrate that the proposed approach outperforms state-of-the-art anomaly detection algorithms on a large, publicly-available dataset.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suburbanisation has been internationally a major phenomenon in the last decades. Suburb-to-suburb routes are nowadays the most widespread road journeys; and this resulted in an increment of distances travelled, particularly on faster suburban highways. The design of highways tends to over-simplify the driving task and this can result in decreased alertness. Driving behaviour is consequently impaired and drivers are then more likely to be involved in road crashes. This is particularly dangerous on highways where the speed limit is high. While effective countermeasures to this decrement in alertness do not currently exist, the development of in-vehicle sensors opens avenues for monitoring driving behaviour in real-time. The aim of this study is to evaluate in real-time the level of alertness of the driver through surrogate measures that can be collected from in-vehicle sensors. Slow EEG activity is used as a reference to evaluate driver's alertness. Data are collected in a driving simulator instrumented with an eye tracking system, a heart rate monitor and an electrodermal activity device (N=25 participants). Four different types of highways (driving scenario of 40 minutes each) are implemented through the variation of the road design (amount of curves and hills) and the roadside environment (amount of buildings and traffic). We show with Neural Networks that reduced alertness can be detected in real-time with an accuracy of 92% using lane positioning, steering wheel movement, head rotation, blink frequency, heart rate variability and skin conductance level. Such results show that it is possible to assess driver's alertness with surrogate measures. Such methodology could be used to warn drivers of their alertness level through the development of an in-vehicle device monitoring in real-time drivers' behaviour on highways, and therefore it could result in improved road safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method for measuring the in-bucket payload volume on a dragline excavator for the purpose of estimating the material's bulk density in real-time. Knowledge of the payload's bulk density can provide feedback to mine planning and scheduling to improve blasting and therefore provide a more uniform bulk density across the excavation site. This allows a single optimal bucket size to be used for maximum overburden removal per dig and in turn reduce costs and emissions in dragline operation and maintenance. The proposed solution uses a range bearing laser to locate and scan full buckets between the lift and dump stages of the dragline cycle. The bucket is segmented from the scene using cluster analysis, and the pose of the bucket is calculated using the Iterative Closest Point (ICP) algorithm. Payload points are identified using a known model and subsequently converted into a height grid for volume estimation. Results from both scaled and full scale implementations show that this method can achieve an accuracy of above 95%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elastic task model, a significant development in scheduling of real-time control tasks, provides a mechanism for flexible workload management in uncertain environments. It tells how to adjust the control periods to fulfill the workload constraints. However, it is not directly linked to the quality-of-control (QoC) management, the ultimate goal of a control system. As a result, it does not tell how to make the best use of the system resources to maximize the QoC improvement. To fill in this gap, a new feedback scheduling framework, which we refer to as QoC elastic scheduling, is developed in this paper for real-time process control systems. It addresses the QoC directly through embedding both the QoC management and workload adaptation into a constrained optimization problem. The resulting solution for period adjustment is in a closed-form expressed in QoC measurements, enabling closed-loop feedback of the QoC to the task scheduler. Whenever the QoC elastic scheduler is activated, it improves the QoC the most while still meeting the system constraints. Examples are given to demonstrate the effectiveness of the QoC elastic scheduling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel approach for identifying risks in executable business processes and detecting them at run time. The approach considers risks in all phases of the business process management lifecycle, and is realized via a distributed, sensor-based architecture. At design-time, sensors are defined to specify risk conditions which when fulfilled, are a likely indicator of faults to occur. Both historical and current execution data can be used to compose such conditions. At run-time, each sensor independently notifies a sensor manager when a risk is detected. In turn, the sensor manager interacts with the monitoring component of a process automation suite to prompt the results to the user who may take remedial actions. The proposed architecture has been implemented in the YAWL system and its performance has been evaluated in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this project was to implement a just-in-time hints help system into a real time strategy (RTS) computer game that would deliver information to the user at the time that it would be of the most benefit. The goal of this help system is to improve the user’s learning in terms of their rate of learning, retention and avoidance of stagnation. The first stage of this project was implementing a computer game to incorporate four different types of skill that the user must acquire, namely motor, perceptual, declarative knowledge and strategic. Subsequently, the just-in-time hints help system was incorporated into the game to assess the user’s knowledge and deliver hints accordingly. The final stage of the project was to test the effectiveness of this help system by conducting two phases of testing. The goal of this testing was to demonstrate an increase in the user’s assessment of the helpfulness of the system from phase one to phase two. The results of this testing showed that there was no significant difference in the user’s responses in the two phases. However, when the results were analysed with respect to several categories of hints that were identified, it became apparent that patterns in the data were beginning to emerge. The conclusions of the project were that further testing with a larger sample size would be required to provide more reliable results and that factors such as the user’s skill level and different types of goals should be taken into account.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reefs are biologically complex ecosystems that support a wide variety of marine organisms. These are fragile communities under enormous threat from natural and human-based influences. Properly assessing and measuring the growth and health of reefs is essential to understanding impacts of ocean acidification, coastal urbanisation and global warming. In this paper, we present an innovative 3-D reconstruction technique based on visual imagery as a non-intrusive, repeatable, in situ method for estimating physical parameters, such as surface area and volume for efficient assessment of long-term variability. The reconstruction algorithms are presented, and benchmarked using an existing data set. We validate the technique underwater, utilising a commercial-off-the-shelf camera and a piece of staghorn coral, Acropora cervicornis. The resulting reconstruction is compared with a laser scan of the coral piece for assessment and validation. The comparison shows that 77% of the pixels in the reconstruction are within 0.3 mm of the ground truth laser scan. Reconstruction results from an unknown video camera are also presented as a segue to future applications of this research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Networked Control System (NCS) is a feedback-driven control system wherein the control loops are closed through a real-time network. Control and feedback signals in an NCS are exchanged among the system’s components in the form of information packets via the network. Nowadays, wireless technologies such as IEEE802.11 are being introduced to modern NCSs as they offer better scalability, larger bandwidth and lower costs. However, this type of network is not designed for NCSs because it introduces a large amount of dropped data, and unpredictable and long transmission latencies due to the characteristics of wireless channels, which are not acceptable for real-time control systems. Real-time control is a class of time-critical application which requires lossless data transmission, small and deterministic delays and jitter. For a real-time control system, network-introduced problems may degrade the system’s performance significantly or even cause system instability. It is therefore important to develop solutions to satisfy real-time requirements in terms of delays, jitter and data losses, and guarantee high levels of performance for time-critical communications in Wireless Networked Control Systems (WNCSs). To improve or even guarantee real-time performance in wireless control systems, this thesis presents several network layout strategies and a new transport layer protocol. Firstly, real-time performances in regard to data transmission delays and reliability of IEEE 802.11b-based UDP/IP NCSs are evaluated through simulations. After analysis of the simulation results, some network layout strategies are presented to achieve relatively small and deterministic network-introduced latencies and reduce data loss rates. These are effective in providing better network performance without performance degradation of other services. After the investigation into the layout strategies, the thesis presents a new transport protocol which is more effcient than UDP and TCP for guaranteeing reliable and time-critical communications in WNCSs. From the networking perspective, introducing appropriate communication schemes, modifying existing network protocols and devising new protocols, have been the most effective and popular ways to improve or even guarantee real-time performance to a certain extent. Most previously proposed schemes and protocols were designed for real-time multimedia communication and they are not suitable for real-time control systems. Therefore, devising a new network protocol that is able to satisfy real-time requirements in WNCSs is the main objective of this research project. The Conditional Retransmission Enabled Transport Protocol (CRETP) is a new network protocol presented in this thesis. Retransmitting unacknowledged data packets is effective in compensating for data losses. However, every data packet in realtime control systems has a deadline and data is assumed invalid or even harmful when its deadline expires. CRETP performs data retransmission only in the case that data is still valid, which guarantees data timeliness and saves memory and network resources. A trade-off between delivery reliability, transmission latency and network resources can be achieved by the conditional retransmission mechanism. Evaluation of protocol performance was conducted through extensive simulations. Comparative studies between CRETP, UDP and TCP were also performed. These results showed that CRETP significantly: 1). improved reliability of communication, 2). guaranteed validity of received data, 3). reduced transmission latency to an acceptable value, and 4). made delays relatively deterministic and predictable. Furthermore, CRETP achieved the best overall performance in comparative studies which makes it the most suitable transport protocol among the three for real-time communications in a WNCS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time networked control systems (NCSs) over data networks are being increasingly implemented on a massive scale in industrial applications. Along with this trend, wireless network technologies have been promoted for modern wireless NCSs (WNCSs). However, popular wireless network standards such as IEEE 802.11/15/16 are not designed for real-time communications. Key issues in real-time applications include limited transmission reliability and poor transmission delay performance. Considering the unique features of real-time control systems, this paper develops a conditional retransmission enabled transport protocol (CRETP) to improve the delay performance of the transmission control protocol (TCP) and also the reliability performance of the user datagram protocol (UDP) and its variants. Key features of the CRETP include a connectionless mechanism with acknowledgement (ACK), conditional retransmission and detection of ineffective data packets on the receiver side.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Popular wireless networks, such as IEEE 802.11/15/16, are not designed for real-time applications. Thus, supporting real-time quality of service (QoS) in wireless real-time control is challenging. This paper adopts the widely used IEEE 802.11, with the focus on its distributed coordination function (DCF), for soft-real-time control systems. The concept of the critical real-time traffic condition is introduced to characterize the marginal satisfaction of real-time requirements. Then, mathematical models are developed to describe the dynamics of DCF based real-time control networks with periodic traffic, a unique feature of control systems. Performance indices such as throughput and packet delay are evaluated using the developed models, particularly under the critical real-time traffic condition. Finally, the proposed modelling is applied to traffic rate control for cross-layer networked control system design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Influenza is a widespread disease occurring in seasonal epidemics, and each year is responsible for up to 500,000 deaths worldwide. Influenza can develop into strains which cause severe symptoms and high mortality rates, and could potentially reach pandemic status if the virus’ properties allow easy transmission. Influenza is transmissible via contact with the virus, either directly (infected people) or indirectly (contaminated objects); via reception of large droplets over short distances (one metre or less); or through inhalation of aerosols containing the virus expelled by infected individuals during respiratory activities, that can remain suspended in the air and travel distances of more than one metre (the aerosol route). Aerosol transmission of viruses involves three stages: production of the droplets containing viruses; transport of the droplets and ability of a virus to remain intact and infectious; and reception of the droplets (via inhalation). Our understanding of the transmission of influenza viruses via the aerosol route is poor, and thus our ability to prevent a widespread outbreak is limited. This study explored the fate of viruses in droplets by investigating the effects of some physical factors on the recovery of both a bacteriophage model and influenza virus. Experiments simulating respiratory droplets were carried out using different types of droplets, generated from a commonly used water-like matrix, and also from an ‘artificial mucous’ matrix which was used to more closely resemble respiratory fluids. To detect viruses in droplets, we used the traditional plaque assay techniques, and also a sensitive, quantitative PCR assay specifically developed for this study. Our results showed that the artificial mucous suspension enhanced the recovery of infectious bacteriophage. We were able to report detection limits of infectious bacteriophage (no bacteriophage was detected by the plaque assay when aerosolised from a suspension of 103 PFU/mL, for three of the four droplet types tested), and that bacteriophage could remain infectious in suspended droplets for up to 20 minutes. We also showed that the nested real-time PCR assay was able to detect the presence of bacteriophage RNA where the plaque assay could not detect any intact particles. Finally, when applying knowledge from the bacteriophage experiments, we reported the quantitative recoveries of influenza viruses in droplets, which were more consistent and stable than we had anticipated. Influenza viruses can be detected up to 20 minutes (after aerosolisation) in suspended aerosols and possibly beyond. It also was detectable from nebulising suspensions with relatively low concentrations of viruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light plays a unique role for plants as it is both a source of energy for growth and a signal for development. Light captured by the pigments in the light harvesting complexes is used to drive the synthesis of the chemical energy required for carbon assimilation. The light perceived by photoreceptors activates effectors, such as transcription factors (TFs), which modulate the expression of light-responsive genes. Recently, it has been speculated that increasing the photosynthetic rate could further improve the yield potential of three carbon (C3) crops such as wheat. However, little is currently known about the transcriptional regulation of photosynthesis genes, particularly in crop species. Nuclear factor Y (NF-Y) TF is a functionally diverse regulator of growth and development in the model plant species, with demonstrated roles in embryo development, stress response, flowering time and chloroplast biogenesis. Furthermore, a light-responsive NF-Y binding site (CCAAT-box) is present in the promoter of a spinach photosynthesis gene. As photosynthesis genes are co-regulated by light and co-regulated genes typically have similar regulatory elements in their promoters, it seems likely that other photosynthesis genes would also have light-responsive CCAAT-boxes. This provided the impetus to investigate the NF-Y TF in bread wheat. This thesis is focussed on wheat NF-Y members that have roles in light-mediated gene regulation with an emphasis on their involvement in the regulation of photosynthesis genes. NF-Y is a heterotrimeric complex, comprised of the three subunits NF-YA, NF-YB and NF-YC. Unlike the mammalian and yeast counterparts, each of the three subunits is encoded by multiple genes in Arabidopsis. The initial step taken in this study was the identification of the wheat NF-Y family (Chapter 3). A search of the current wheat nucleotide sequence databases identified 37 NF-Y genes (10 NF-YA, 11 NF-YB, 14 NF-YC & 2 Dr1). Phylogenetic analysis revealed that each of the three wheat NF-Y (TaNF-Y) subunit families could be divided into 4-5 clades based on their conserved core regions. Outside of the core regions, eleven motifs were identified to be conserved between Arabidopsis, rice and wheat NF-Y subunit members. The expression profiles of TaNF-Y genes were constructed using quantitative real-time polymerase chain reaction (RT-PCR). Some TaNF-Y subunit members had little variation in their transcript levels among the organs, while others displayed organ-predominant expression profiles, including those expressed mainly in the photosynthetic organs. To investigate their potential role in light-mediated gene regulation, the light responsiveness of the TaNF-Y genes were examined (Chapters 4 and 5). Two TaNF-YB and five TaNF-YC members were markedly upregulated by light in both the wheat leaves and seedling shoots. To identify the potential target genes of the light-upregulated NF-Y subunit members, a gene expression correlation analysis was conducted using publically available Affymetrix Wheat Genome Array datasets. This analysis revealed that the transcript expression levels of TaNF-YB3 and TaNF-YC11 were significantly correlated with those of photosynthesis genes. These correlated express profiles were also observed in the quantitative RT-PCR dataset from wheat plants grown under light and dark conditions. Sequence analysis of the promoters of these wheat photosynthesis genes revealed that they were enriched with potential NF-Y binding sites (CCAAT-box). The potential role of TaNF-YB3 in the regulation of photosynthetic genes was further investigated using a transgenic approach (Chapter 5). Transgenic wheat lines constitutively expressing TaNF-YB3 were found to have significantly increased expression levels of photosynthesis genes, including those encoding light harvesting chlorophyll a/b-binding proteins, photosystem I reaction centre subunits, a chloroplast ATP synthase subunit and glutamyl-tRNA reductase (GluTR). GluTR is a rate-limiting enzyme in the chlorophyll biosynthesis pathway. In association with the increased expression of the photosynthesis genes, the transgenic lines had a higher leaf chlorophyll content, increased photosynthetic rate and had a more rapid early growth rate compared to the wild-type wheat. In addition to its role in the regulation of photosynthesis genes, TaNF-YB3 overexpression lines flower on average 2-days earlier than the wild-type (Chapter 6). Quantitative RT-PCR analysis showed that there was a 13-fold increase in the expression level of the floral integrator, TaFT. The transcript levels of other downstream genes (TaFT2 and TaVRN1) were also increased in the transgenic lines. Furthermore, the transcript levels of TaNF-YB3 were significantly correlated with those of constans (CO), constans-like (COL) and timing of chlorophyll a/b-binding (CAB) expression 1 [TOC1; (CCT)] domain-containing proteins known to be involved in the regulation of flowering time. To summarise the key findings of this study, 37 NF-Y genes were identified in the crop species wheat. An in depth analysis of TaNF-Y gene expression profiles revealed that the potential role of some light-upregulated members was in the regulation of photosynthetic genes. The involvement of TaNF-YB3 in the regulation of photosynthesis genes was supported by data obtained from transgenic wheat lines with increased constitutive expression of TaNF-YB3. The overexpression of TaNF-YB3 in the transgenic lines revealed this NF-YB member is also involved in the fine-tuning of flowering time. These data suggest that the NF-Y TF plays an important role in light-mediated gene regulation in wheat.